Coventry Building Society

Security Profile v2.0

Confidential



Contents

@001V L= a1 VA =TT o [T o TR0 o1 =1 Y/ RSP 0
YT ol B 1 Y2 o 1011 IR 222 PR 0
AV Z=T 51T g el 11 o OO PP PR PP RPN 4
REIBASE NOLE..... ettt ettt e e ettt ekt esa R et oo R et e s s et e 4R e e e 1R R e e e Re e e R Rt e 1A R e e e AR R e e eaRe e e R e e e e R et e R e e e nn e e e nr e e nnre e e nn e 4
L@ =T = PSPPSRI 4
F UL g [=T g1 (Tt 1T ] o PO PR PP RPN 4
Ry To DTS =T To (= SO PP P PP UPUPRTOPPI 5
(O3 1= o] Y/ 1= R TP PP PP TP PPN 5
LT =T o1 N o1 TP PP PP PTPPPPP 5
OIDC Hybrid Flow (response_type=Code id_TOKEN) ........iiueiii ittt e et e e et b e e e bb e e e s sbbe e e e sbbeeeesanbeeeeaas 5
Client Credentials Grant Type using multiple scopes (SCOPe=acCoUNtS PAYMENTS) .......ccurrieiriireeeirireeeniireeesrreeeesnreeeeans 5
10 10 =T o SRR 6
Access Tokens issued through Client CredentialS Grant ...........ocueeieiiiiii it e e sbbe e e e sereee e 7
Access Tokens issued through AUthOriZation COOE GIraANT ..........c.ueiiiiiiiiiiiiiiee ettt et e e sereee e 7
y U g lo] 4= 11 (o] 4 JK O o {2 PP PPPRPPPPRIN 7
Success Flows - Payment APl SPeCifiCation ... 8
Payment Initiation with Client Credentials Grant Type and OIDC Hybrid FIOW.............ccooe oo, 8
Client Credentials Grant Type (OAULh 2.0) ... 9
01D O o 1Y/ o [o I [0 PP PRPPTP 9
Non-Normative HTTP Request and ReSponse EXamMPIES .......cccooiiieiiii e 9
Success Flows - Account API SPeCIfiCation...........oooo i 17
Account and Transaction Information with Client Credentials Grant Type and OIDC Hybrid FIOW ...........ccccceeeviiieeenns 17
Client Credentials Grant TYPE (OAULN 2.0) ..ottt ettt e e st e e ea b e e e e nbb e e e e snbbeeeeanees 18
@110 IO o 1Y, ool [0 TR PP TP PPR 18
Non-Normative HTTP Request and ReSpONSE EXAMPIES ........oviiiiiiiiiiiiiii ettt 18
Success Flows — Funds Confirmation APl SPECIfICALION ........ouuiiiiiiiiii e e e 24

Funds Confirmation with Client Credentials Grant Type and OIDC Hybrid FIOW...........cccccciiiiiiiiniiiiiceeieee e 24



e Covermwnoed ende

{ Lach P
B S
]

_--_-!m
et

Troued whe SOV wod somsent = Confrwaion of V) !

— G

' ' ] 1
'
' : l.-r.—wvwﬁa-‘o-*'- ﬁ : :
' ' | \
: T — trcarterese | H
| | ' i
'
' -.ummm-un’
' )
! o ] i
] L :
' 1 ]
' l}
: I(—n‘ rous T N A0 T ﬁ :
' T I}
' | '
! BT Saarcrier e Sera]) |
| i
H | e
} TT® 201 irwwnei Coresets
i H
| ! '
H Sewtte OC AT whr e Shaims e vt Sav E_iiar {
' Pvane Comrts ‘wearia \
: ] [e—har bl ' '
i i
] ] |
| | il
] ' '
' : |
B D e T | '
DI RSP0 F_IARA NS ST I ey \ 1
) L
| Il
| ]
Fobza miseTomiemis) | 1
| - |
Aswetiaen wes | i
=t i
Damais mibuliatin we _lbani 1
WITP B3 Foure Locion esms wi sePotzat sn ok, & 1
il
fr8re msmmArTIuson 2ee T 1] : :
) ]
| i
' P, | i
! 2 a | i
| ]
' i
'
i - J |
' i
' | i
| | |
' | ]
' L} )
! POBT Astrcorteversmi :
e
H '
| '
' '
! | s PR
|
' '
: : Caapnm Fboes e o
' WTTE 3 Farcuaterasang Taovelacie [feas
)
H ]
N 1 |
' | ]
: | '
i %.‘
' '
'
' -‘"’ﬂlww—n
{ e
' |
' ' | il
| ' l '

Client Credentials Grant TYPe (OAULN 2.0) ....uuiiiiieiii et s e s e e e e e e s e st re e e e e e s s assstaaereaeeesaaasnsranneeeeesannnnes 25
L0 110 @ o Y oo 1 o PR 25
Non-Normative HTTP Request and ReSpONSe EXAMPIES .......viiiiiiiiiieiieiie ettt 25
=0 (o[ O L] T PP PPEP PP PPPPRP 31
PSU Consent Authorization INterrupt With CBS .........ooiiiiiii et e e 31






Version control

Version Date Updated by Changes made

1.0 07 Feb 2018 Coventry Building Society Baseline version

20 20 Feb 2019 Coventry Building Society Update to utilise eIDAS
certificates

Release Note

This release note explains what's new in The CBS Security Profile between versions.

Version 2.0 — As per the RTS, TPPs with eIDAS certificates must be allowed access to CBS APIs without requiring a
further certificate. On that basis CBS has decided to only accept elIDAS certificates from September 14" 2019

There will be a 3 month period prior to the September deadline where a TPP with an existing CBS certificate will be able to
use either their CBS certificate or eIDAS certificate. To allow this CBS will be communicating with existing on-boarded
TPPs the information required to allow dual access.

CBS provided certificates will be revoked and only eIDAS certificates accepted from September 14" 2019.

The migration process to elDAS certificates will be communicated to TPPs who on-boarded with CBS prior to September
14™ 2019 to facilitate a smooth transition.

Overview

This specification describes the authentication and authorisation given to Third Party Providers (TPPSs) to receive
payments, obtain funds confirmation or access account information from Coventry Building Society (CBS) accounts by our
customers.

The API endpoints described here allow an AISP to:

e Create and retrieve TPP payment authorisations
e Create, retrieve and revoke TPP account access authorisations

CBS has adopted the same standards as have been implemented by Open Banking. These can be found here:
https://www.openbanking.org.uk/standards/

Authentication

Consent leverages the OAuth 2.0 authorization framework, allowing customers of CBS to log into applications to grant
authorisation to access their account data or to initiate payments from their accounts without exposing their credentials to
the TPP.


https://www.openbanking.org.uk/standards/

In addition to OAuth 2.0, OpenlID Connect identity layer has been used to pass the AccountRequestld, Paymentid and
Consentld (created by the TPP when registering an intent to access data) within the Hybrid Flow, allowing CBS to link the
intent created by the TPP to the customer who will authenticate and authorize the intent.

Request Header

Every request must include a header field called client_id with the value set to the clientld provided by CBS

POST https://resourcema.coventrybuildingsociety.co.uk/mga/sps/oauth/oauth20/token HTTP/1.1

client_id: {clientld value}

Client Types

As per OAuth2 specification, the Confidential Client Type has been implemented. Access to CBS API’s is based on TPPs
authenticating securely with our Authorization Server. TPP’s must maintain the confidentiality of the client credentials
which CBS will provide once a TPP successfully on-boards with CBS.

All communication between the TPP and CBS is over TLS 1.2 MA using eIDAS QWAC and QSEALC PSD2 certificates.
Grant Types

OIDC Hybrid Flow (response_type=code id_token)

Both the Payments, Funds Confirmation and Accounts APIs illustrate the use of request_type=code id_token for the OIDC
Hybrid Flow implementation.

Client Credentials Grant Type using multiple scopes (scope=accounts payments)

e The Client Credentials Grant Type is used across both Payments, Funds Confirmation and Account APIs only
when the TPP (AISP/PISP/CBPII) requires an Access Token (on behalf of itself) in order to access a Payment,
Funds Confirmation or Accounts API resource e.g.

o Payments:

POST /payments

GET /payment-submissions/{PaymentSubmissionld}

o Accounts:

POST /account-requests

o Funds Confirmation:

POST /funds-confirmation-consents



e A TPP may therefore choose to request for either a single scope e.g. accounts or for multiple scope(s) e.g.
accounts payments as the TPP may want to use the same Access Token across both APIs.

e Only valid API scopes will be accepted when generating an Access Token (accounts payments
fundsconfirmations).

e Access tokens generated by a Client Credentials grant may not return any refresh tokens (as per the OAuth 2.0
specification)

e Access tokens generated by a Client Credentials grant will expire after 3600 seconds.

Example — Client Credentials:

https://resourcema.coventrybuildingsociety.co.uk/mga/sps/oauth/oauth20/token

Request must include:

grant_type="Client Credentials”
scope="openld accounts”
client_id={clientld provided by CBS when TPP on-boarded}

client_secret={client secret provided by CBS when TPP on-boarded}

ID Token

e ID Tokens must be validated by the TPP (AISP/PISP) as outlined within the OIDC Errata 1 Specification

e TPPs must use the openbanking_intent_id claim to populate and retrieve the IntentID (PaymentID for Payments
API and AccountRequestld for the Accounts API) for any required validation.

e The full set of claims that can be represented within an ID Token are documented in the Request Object and ID
Token Section of the Security Profile.

e ID Token claims (exp and iat) determine its validity.

e Returned with the Authorization Code when the Hybrid flow (code id_token) is initiated.


https://resourcema.coventrybuildingsociety.co.uk/mga/sps/oauth/oauth20/token
http://openid.net/specs/openid-connect-core-1_0.html#HybridAuthResponseValidation

Access Tokens issued through Client Credentials Grant

Only valid API scopes will be accepted when generating an Access Token (accounts payments
fundsconfirmations).

Access tokens generated by a Client Credentials grant may not return any refresh tokens (as per the OAuth 2.0
specification)

Access tokens generated by a Client Credentials grant for will expire after 3600 seconds (1 hour).

Access Tokens issued through Authorization Code Grant

For the Payments and Accounts APls, the Access Token must be obtained within a Secure, Server Side Context
between the TPP (AISP / PISP) and CBS.

Access Tokens must be validated by the TPP (AISP/PISP) as outlined within the OIDC Errata 1 Specification

The expires_in attribute returned by the Authorization Server when an Access Token is generated determines its
validity.

Our Access Tokens for Payment Initiation are set to expire after 3600 seconds (1 hour)

Our Access Tokens for Account Information and Funds Confirmation are set to expire after 90 days, after which a
new account or funds confirmation request should be initiated. We do not currently support Refresh Tokens.

Authorization Codes

Authorization Codes must be validated by the TPP (AISP/PISP) as outlined within the OIDC Errata 1 Specification
OAuth 2.0 Specification suggests an Authorization Code should be short lived to a maximum of 10 minutes. Any
codes exceeding this limit to be rejected.

CBS authorization codes will expire after 5 minutes.



http://openid.net/specs/openid-connect-core-1_0.html#HybridAuthResponseValidation
http://openid.net/specs/openid-connect-core-1_0.html#HybridAuthResponseValidation
https://tools.ietf.org/html/rfc6749#section-4.1.2

Success Flows - Payment API Specification

Payment Initiation with Client Credentials Grant Type and OIDC Hybrid Flow

i
z

1
i

B T3 T . ]
[n—-——n—ﬁ p— i

s
S TLA | 300
T ;
QAT pevmeptemmt tyaee epge . -

f st b e wrme

! -
| et

STIP P01 Cmetedt Mot

TR D e e a—— ——

|
|
.o

;
|
3
|
|
|
|

00 Tet hsne S (T ante g Sbreniny

O e I

-
-....ﬁ e bt e et Pt s e =

I N s ke i ]

7
!
j--}

K

L

3

i
SR (= = SO X 4

PENT Satr | v 4 e s
o 1T B0 L st ot ke s
T
i

a1e s

[




Client Credentials Grant Type (OAuth 2.0)

Summary
This grant type is used by the PISP in Step 2 to setup a single payment with CBS.

1.
2.
3.

o

The client_id must be included within the Request Header

The PISP initiates an Authorization request using valid Client Credentials Grant type and scope(s)

The CBS Authorization Server validates the Client Authentication request from the PISP and generates an Access
Token response where the request is valid

The PISP uses the Access Token to create a new Payment resource against the CBS Resource Server

The CBS Resource server responds with the Paymentld for the resource it has created.

The Client Credentials Grant may optionally be used by the PISP in Step 5 to retrieve the status of a Payment or
Payment-Submission where no active Access Token is available.

OIDC Hybrid Flow

Summary

The client_id must be included within the Request Header

The Hybrid flow is the recommendation from the OB Security Profile and the FAPI Specification for R/W. The
Hybrid flow prevents IdP mixup attacks as documented by Nat Sakimura - Cut and Paste OAuth 2.0 Attack

This is initiated at the end of Step 2 by the PISP after the Paymentld is generated by CBS and returned to the
PISP.

This is used in a redirect across the PSU and CBS in Step 3 in order for the PSU to authorize consent with CBS -
for the PISP to proceed with the Payment.

This is used across the PISP and CBS in Step 4 by exchanging the Authorization Code for an Access Token in
order to create the Payment-Submission resource.

Non-Normative HTTP Request and Response Examples

Step 1 - Request Payment Initiation
There are no Requests and Responses against the Payments API in this Step for the PSU, PISP and CBS.

Step 2 - Setup Single Payment Initiation

1. PISP obtains an Access Token using a Client Credentials Grant Type. The scope payments must be used. When
an Access Token expires, the PISP will need to re-request for another Access Token using the same request
below.

Request: Client Credentials Response: Client Credentials

POST

/ mga/sps/oauth/oauth20/token Content-Length: 1103

HTTP/1.1 Content-Type: application/json

Host:

https:// Date: Mon, 26 Jun 2017 15:18:28 GMT

resourcema.coventrybuildingsociety.co.uk {
client id: tppclientid "access_ token":

Content-Type: application/x-www-form- "2YotnFZFEjrlzCsicMWpAA",
urlencoded "expires in": 3600,
Accept: application/json "token type": "bearer",
grant_ type=client credentials "scope" :"payments"
&scope=openid payments

&client id=tppclientid



https://tools.ietf.org/html/rfc6749#section-4.4
http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth
https://nat.sakimura.org/2016/01/25/cut-and-pasted-code-attack-in-oauth-2-0-rfc6749/

2. PISP uses the Access Token (with payments scope) from CBS to invoke the Payments API.

Request: Payments API

POST /payments HTTP/1.1

Authorization: Bearer
2YotnFZFEjrlzCsicMWpAA

x—idempotency-key: FRESC0.21302.GFX.20
x-fapi-financial-id: OB/2017/001
x-fapi-customer-last-logged-time: 2017-06-
13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99
x-fapi-interaction-id: 93bac548-d2de-4546-
b106-880a5018460d

client id: tppclientid

Content-Type: application/json

Accept: application/json

{
"Data": {
"Initiation": {
"InstructionIdentification":
"ACME412",
"EndToEndIdentification":
"FRESC0.21302.GFX.20",
"InstructedAmount": {
"Amount": "165.88",
"Currency": "GBP"
bo
"CreditorAccount": {
"SchemeName" :
"SortCodeAccountNumber",
"Identification":
"08080021325698",
"Name": "ACME Inc",
"SecondaryIdentification": "0002"
b
"RemittanceInformation": {
"Reference": "FRESCO-101",
"Unstructured": "Internal ops code
5120101"
}
}
b
"Risk": {
"PaymentContextCode":
"EcommerceGoods",
"MerchantCategoryCode": "5967",
"MerchantCustomerIdentification":
"053598653254",
"DeliveryAddress": {
"AddressLine": [

Response: Payments APT

HTTP/1.1 201 Created
x-fapi-interaction-id: 93bac548-d2de-4546-
b106-880a5018460d

Content-Type: application/json

{
"Data": {
"PaymentId": "612d9e8e-074b-490b-bc8a-
0df5287a0dbc",
"Status":
"AcceptedTechnicalValidation",
"CreationDateTime": "2017-06-
05T15:15:13+00:00",
"Initiation": {
"InstructionIdentification":
"ACME412",
"EndToEndIdentification":
"FRESCO0.21302.GFX.20",
"InstructedAmount": {
"Amount": "165.88",
"Currency": "GBP"
b
"CreditorAccount": {
"SchemeName" :
"SortCodeAccountNumber",
"Identification":
"08080021325698",
"Name": "ACME Inc",
"SecondaryIdentification": "0002"
ba
"RemittanceInformation": {
"Reference": "FRESCO-101",
"Unstructured": "Internal ops code
5120101"
}
}
b
"Risk": {
"PaymentContextCode":
"EcommerceGoods",
"MerchantCategoryCode": "5967",
"MerchantCustomerIdentification":
"053598653254",
"DeliveryAddress": {
"AddressLine": [
"Flat 7",
"Acacia Lodge"

1,




"Flat 7",
"Acacia Lodge"
1
"StreetName": "Acacia Avenue",
"BuildingNumber": "27",
"PostCode": "GU31 2zz",
"TownName": "Sparsholt",
"CountySubDivision": [
"Wessex"
1,
"Country": "UK"

Step 3 - Authorize Consent

"StreetName": "Acacia Avenue",
"BuildingNumber": "27",
"PostCode": "GU31 2zz",
"TownName": "Sparsholt",
"CountySubDivision": [
"Wessex"
1,
"Country": "UK"
}
bo
"Links": {
"Self": "/open-banking/open-

banking/v2.0/payments/58923"

by
"Meta": {}

1. PISP receives a Paymentld from CBS. The PISP then creates an Authorization request (using a signed JWT
Request containing the PaymentID as a claim) for the PSU to consent to the Payment directly with CBS. The
request is an OIDC Hybrid flow (requesting for Code and id_token). The same redirect URL which was submitted

to CBS when the TPP on-boarded must be used.

Request: OIDC Hybrid Flow Response: OIDC Hybrid Flow

GET /cbs/authorize?

client id: tppclientid
response type=code id token
&state=af0ifjsldk]
&scope=openid payments
&nonce=n-0S6_WzA2Mj

&redirect uri=https://api.mytpp.com/cb
&request=CJleHAi1O0jEOOTUxOTk10Dd JjVgsD
uushgpwpOE.51eGFtcGx1TI
iwianRpIjoiM....J1leHAiOjEO.olnx YKAm2Jlrbp
OP8wGhi1BDNHJjVgsDuushgpwpOE

HTTP/1.1 302 Found

Location: https://api.mytpp.com/cb#
code=Splx10BeZQQYbYS6WxSbIA
&id token=eyJo0 NiJ9.eyJlc

I6IjIifX0.DeWt4Qu ... ZXso

&state=af0ifjsldkj

Non-Base64 encoded example of the request
parameter object

"alg": "",

"kid": "GxlIiwianVgsDuushgjEOOTUxOTk"
{

"iss": "https://

resourcema.coventrybuildingsociety.co.uk

"
14

"aud": "s6BhdRkgt3",

"response type": "code id_ token",

"client id": "s6BhdRkgt3",

"redirect uri":
"https://api.mytpp.com/cb",

"scope": "openid payments accounts",




"state": "afOifjsldkj",
"nonce": "n-0S6 WzA2Mj",
"max age": 86400,
"claims":

{

"userinfo":

{

"openbanking intent id": {"value":
"612d9e8e-074b-490b-bc8a-0df5287a0dbc",
"essential": true}

by

"id token":

{

"openbanking intent id": {"value":
"612d9e8e-074b-490b-bc8a-0d£5287a0dbc",
"essential": true},

"acr": {"essential": true,

"values":
["urn:openbanking:psd2:sca",

"urn:openbanking:psd2:ca"]}}}
}
}

2. The PSU is then redirected to the PISP. The PISP will now possess the Authorization Code and ID Token from CBS.
Note at this point, there is no Access Token. The PISP will now introspect the ID Token and use it to check:

e The hash of the Authorization Code to prove it hasn't been tampered with during redirect (comparing the hash
value against the ¢_hash attribute in ID Token)

e The hash of the State to prove it hasn't been tampered with during redirect (comparing the state hash value against
the s_hash attribute in the ID Token)

Example: ID Token

"alg": "RS256",
"kid": "12345",
"typ": "JWT"

}

{
"iss": "https://

resourcema.coventrybuildingsociety.co.uk

"
14

"iat": 1234569795,

"sub": "urn:alphabank:payment:58923",

"acr": "urn:openbanking:psd2:ca",

"openbanking intent id":
"urn:alphabank:payment: 612d9%e8e-074b-490b-
bc8a-0df5287a0dbc",




"aud": "s6BhdRkgt3",
"nonce": "n-0S6 WzA2Mj",
"exp": 1311281970,

"s _hash": "76sa5dd",

"c _hash": "asd097d4d"

2. Once the state and code validations have been confirmed as successful by use of the ID token, the PISP will
proceed to obtain an Access Token from CBS using the Authorization Code they now possess.. The Access Token
is required by the PISP in order to submit the Payment on behalf of the PSU. The payments scope should already
be associated with the Authorization Code generated in the previous step.

Request: Access Token Request using Response: Access Token
Authorization Code Grant

POST /mga/sps/oauth/ocauth20/token
HTTP/1.1

Host: https://
resourcema.coventrybuildingsociety.co.uk
client id: tppclientid

Content-Type: application/x-www-form-
urlencoded

Accept: application/json

grant type=authorization code
&code=Splx10BeZQQYbYSO6WxSOIA

&redirect uri=https://api.mytpp.com/cb
&scope=openid payments

&client id=tppclientid

&client secret=tppclientsecret

HTTP/1.1 200 OK

Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
"access token": "S1AV32hkKG",

"token type": "Bearer",
"expires in": 3600

}

Step 4 - Create Payment-Submission

1. The PISP has an Access Token which can be used to Create a Payment-Submission (Step 4). The PISP must obtain the
Paymentld (Intent-ID) so that the Payment request is associated with the correct Paymentld. This can be sourced from:

1. The Paymentld claim from the ID Token (default). The PISP will need to locate the claim attribute associated with
the Paymentlid.

The PISP can now invoke the /payment-submissions endpoint to commit the Payment using the Access Token and
Paymentld in the payload of the request. This example is sourced from the Payment Initiation API Specification

Request: payment-submissions Response: payment-submissions

POST /payment-submissions HTTP/1.1 HTTP/1.1 201 Created

Authorization: Bearer S1AV32hkKG x-fapi-interaction-id: 93bac548-d2de-4546-



x-idempotency-key: FRESNO.1317.GFX.22
x-fapi-financial-id: 0B/2017/001
x-fapi-customer-last-logged-time: 2017-06-
13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99
x-fapi-interaction-id: 93bac548-d2de-4546-
b106-880a5018460d

client id: tppclientid

Content-Type: application/json

Accept: application/json

{
"Data": {
"PaymentId": "612d9%9e8e-074b-490b-bc8a-
0df5287a0dbc",
"Initiation": {
"InstructionIdentification":
"ACME412",
"EndToEndIdentification":
"FRESC0.21302.GFX.20",
"InstructedAmount": {
"Amount": "165.88",
"Currency": "GBP"
b
"CreditorAccount": {
"SchemeName" :
"SortCodeAccountNumber",
"Identification":
"08080021325698",
"Name": "ACME Inc",
"SecondaryIdentification": "0002"
b
"RemittanceInformation": {
"Reference": "FRESCO-101",
"Unstructured": "Internal ops code
5120101"
}
}
b
"Risk": {
"PaymentContextCode":
"EcommerceGoods",
"MerchantCategoryCode": "5967",
"MerchantCustomerIdentification":
"053598653254",
"DeliveryAddress": {
"AddressLine": [
"Flat 7",
"Acacia Lodge"
1,
"StreetName": "Acacia Avenue",
"BuildingNumber": "27",
"PostCode": "GU31 2zz",
"TownName": "Sparsholt",
"CountySubDivision": [
"Wessex"

1/

b106-880a5018460d
Content-Type: application/json

{
"Data": {
"PaymentSubmissionId": "58923-001",
"PaymentId": "612d9%9e8e-074b-490b-bc8a-
0df5287a0dbc",
"Status":
"AcceptedSettlementInProcess",
"CreationDateTime": "2017-06-
05T15:15:22+00:00"

"Self": "/open-banking/v2.0/payment-
submissions/58923-001"




"Country": "UK"




Step 5 - Get Payment-Submission Status

1. The PISP can query for the status of a Payment-Submission by invoking the /payment-submissions using the
known PaymentSubmissionld. This can use an existing access token with payments scope or the PISP can obtain
a fresh access token by replaying the client credentials grant request as per Step 2 - Setup Single Payment

Initiation.

Request: payment-
submissions/{PaymentSubmissionId}

GET /payment-submissions/58923-001
HTTP/1.1

Authorization: Bearer S1AV32hkKG
x-fapi-financial-id: OB/2017/001
x-fapi-customer-last-logged-time: 2017-06-
13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99
x-fapi-interaction-id: 93bac548-d2de-4546-
b106-880a5018460d

client id: tppclientid

Accept: application/json

Response: payment-submissions

HTTP/1.1 200 OK

x-fapi-interaction-id: 93bac548-d2de-4546-
b106-880a5018460d

Content-Type: application/json

{
"Data": {
"PaymentSubmissionId": "58923-001",
"PaymentId": "612d9%9e8e-074b-490b-bc8a-
0df5287a0dbc",
"Status":
"AcceptedSettlementInProcess",
"CreationDateTime": "2017-06-
05T15:15:22+00:00"
b
"Links": {
"Self": "/open-banking/v2.0/payment-
submissions/58923-001"
by
"Meta": {}

2. A PISP can also optionally query for the status of a Payment resource by invoking /payments/{Paymentld}. This
can use an existing access token with payments scope or the PISP can obtain a fresh access token by replaying
the client credentials grant request as per Step 2 - Setup Single Payment Initiation.



Success Flows - Account API Specification

Account and Transaction Information with Client Credentials Grant Type and OIDC Hybrid Flow

T S ot et 300 o

i 1 mm

.

_I
1 |
== L L
= T H
. e s e b { '\f
2L \
| T
TS e
- . o
| AR
" |
. | 1
e — ! i
S H
! 7
pt) — |
T e |
e b e b
ST B D e vt s
o _-.H.lﬂl
- "y -
{
|
seve o
T H




Client Credentials Grant Type (OAuth 2.0)

Summary
This grant type is used by the AISP in Step 2 to register an intent for the PSU to allow the AISP to retrieve their Account
information from CBS.

1. The client_id must be included within the Request Header

2. The AISP initiates an Authorization request using valid Client Credentials Grant type and scope(s)

3. The CBS Authorization Server validates the Client Authentication request from the AISP and generates an Access
Token response where the request is valid

4. The AISP uses the Access Token to create a new Account Request resource against the CBS Resource Server

5. The CBS Resource server responds with the AccountRequestld representing the resource it has created.

OIDC Hybrid Flow

Summary

1. The client_id must be included within the Request Header

2. This is initiated at the end of Step 2 by the AISP after the AccountRequestld is generated by CBS and returned to
the AISP.

3. This is used in a redirect across the PSU and CBS in Step 3 in order for the PSU to authorize consent with CBS -
for the AISP to proceed with the requesting Account information.

4. This is used across the AISP and CBS in Step 4 by swapping the Authorization Code for an Access Token in order
to retrieve PSU Account information.

Non-Normative HTTP Request and Response Examples

Step 1 - Request Account Information
There are no Requests and Responses against the Accounts and Transactions API in this Step for the PSU, AISP and
CBS.

Step 2 - Setup Account Request
1. AISP obtains an Access Token using a Client Credentials Grant Type. The scope accounts must be used. When
an Access Token expires, the AISP will need to re-request for another Access Token using the same request
below.

Request: Client Credentials Response: Client Credentials

POST /mga/sps/oauth/oauth20/token Content-Length: 1103

HTTP/1.1 Content-Type: application/json
Host: Date: Mon, 26 Jun 2017 15:18:28 GMT
https://resourcema.coventrybuildingsociety {

.co.uk "access token":

client id: tppclientid "2YotnFZFEJjrlzCsicMWpAA",
Content-Type: application/x-www-form- "expires in": 3600,

urlencoded "token type": "bearer",
Accept: application/json "scope":"accounts"
grant type=client credentials

&scope=openid accounts

&client id=tppclientid

&client secret=tppclientsecret




2. AISP uses the Access Token (with accounts scope) from CBS to invoke the Accounts APL. This example is

sourced directly from the Account and Transactions API Specification

Request: Accounts API

POST /account-requests HTTP/1.1
Authorization: Bearer
2YotnFZFEjrlzCsicMWpAA
x-fapi-financial-id: 0OB/2017/001
x-fapi-customer-last-logged-time: 2017-06-
13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99
x-fapi-interaction-id: 93bac548-d2de-4546-
b106-880a5018460d

client id: tppclientid
Content-Type: application/json
Accept: application/json

{
"Data": {

"Permissions": [
"ReadAccountsDetail",
"ReadBalances",
"ReadBeneficiariesDetail",
"ReadDirectDebits",
"ReadProducts",
"ReadStandingOrdersDetail",
"ReadTransactionsCredits",
"ReadTransactionsDebits",
"ReadTransactionsDetail"

1,

"ExpirationDateTime": "2017-05-

02T00:00:00+00:00",

"TransactionFromDateTime": "2017-05-

03T00:00:00+00:00",

"TransactionToDateTime": "2017-12-

03T00:00:00+00:00"
b
"Risk": {}

Step 3 - Authorize Consent

Response: Accounts API

HTTP/1.1 201 Created
x-fapi-interaction-id: 93bac548-d2de-4546-
b106-880a5018460d

Content-Type: application/json

{
"Data": {

"AccountRequestId": "612d9%e8e-074b-

490b-bc8a-0df5287a0dbc",

"Status": "AwaitingAuthorisation",

"CreationDateTime": "2017-05-

02T00:00:00+00:00",

"Permissions": [
"ReadAccountsDetail",
"ReadBalances",
"ReadBeneficiariesDetail",
"ReadDirectDebits",
"ReadProducts",
"ReadStandingOrdersDetail",
"ReadTransactionsCredits",
"ReadTransactionsDebits",
"ReadTransactionsDetail"

1,

"ExpirationDateTime": "2017-08-

02T00:00:00+00:00",

"TransactionFromDateTime":

03T00:00:00+00:00",

"TransactionToDateTime": "2017-12-

03T00:00:00+00:00"
ba
"Risk": {1},
"Links": {

"Self": "/account-requests/612d9%e8e-

074b-490b-bc8a-0df5287a0dbc"

"2017-05-

"TotalPages": 1

1. AISP receives a AccountRequestld from CBS. The AISP then creates an Authorization request (using a signed
JWT Request containing the AccountRequestld as a claim) for the PSU to consent to the Account request directly
with CBS. The request is an OIDC Hybrid flow (requesting for Code and id_token)



Request: OIDC Hybrid Flow Response: OIDC Hybrid Flow

GET /cbs/authorize? HTTP/1.1 302 Found

response_type=code id token Location: https://api.mytpp.com/cb#
&client id=s6BhdRkgt3 code=Splx10BeZQQYbYS6WxXSbIA
&state=af0ifjsldkj &id token=eyJO0 ... NiJ9.eyJlc
&scope=openid accounts I6IJIifX0.DeWtd4Qu ... ZXso

&nonce=n-0S6_WzA2Mj &state=af0ifjsldk]j
&redirect uri=https://api.mytpp.com/cb
&request=CJleHA1O0jEOOTUxOTk10Dd JjVagsD

uushgpwpOE.51eGFtceGx1T

iwianRpIjoiM....J1leHAiOjEO.o0lnx YKAm2Jlrbp
OP8wGhi1BDNHJjVgsDuushgpwpOE

Non-Base64 encoded example of the request
parameter object

"alg": "RS256",
"kid": "GxlIiwianVgsDuushgjEOOTUxOTk"

{

"iss":
"https://resourcema.coventrybuildingsociet
y.co.uk",

"aud": "s6BhdRkqgt3",

"response type": "code id token",

"client id": "s6BhdRkqt3",

"redirect uri":
"https://api.mytpp.com/cb",

"scope": "openid accounts",

"state": "afOifjsldkj",

"nonce": "n-0S6_WzA2Mj",

"max age": 86400,

"claims":

{
"userinfo":
{

"openbanking intent id": {"value":
"612d9e8e-074b-490b-bc8a-0d4df5287a0dbc",
"essential": true}

br
"id token™:

{

"openbanking intent id": {"value":
"612d9e8e-074b-490b-bc8a-0d£5287a0dbc",
"essential": true},

"acr": {"essential": true,

"values":
["urn:openbanking:psd2:sca",

"urn:openbanking:psd2:ca"]}}
}
}




2. The PSU is then redirected to the AISP. The AISP will now possess the Authorization Code and ID Token from CBS.
Note at this point, there is no Access Token. The AISP will now introspect the ID Token and use it as a detached signature
to check:

e The hash of the Authorization Code to prove it hasn't been tampered with during redirect (comparing the hash
value against the c_hash attribute in ID Token)

e The hash of the State to prove it hasn't been tampered with during redirect (comparing the state hash value against
the s_hash attribute in the ID Token)

Example: ID Token

llalg": IIR8256",
"kid": "Gx1lIiwianVgsDuushgjEOOTUxOTk"

{

"iss": "https://
resourcema.coventrybuildingsociety.co.uk

"
4

"iat": 1234569795,

"sub":
"urn:alphabank:accountRequestId:88379",
"acr": "urn:openbanking:psd2:ca",

"openbanking intent id":
"urn:alphabank:accountRequestId:612d9%e8e-
074b-490b-bc8a-0d4£5287a0dbc",

"aud": "s6BhdRkqgt3",

"nonce": "n-0S6_WzA2Mj",

"exp": 1311281970,

"s hash": "76sabdd",

"c_hash": "asd097d"

3. Once the state and code validations have been confirmed as successful by use of the ID token, the AISP will proceed to
obtain an Access Token from CBS using the Authorization Code they now possess. The Access Token is required by the
AISP in order to access PSU Account information. The accounts scope should already be associated with the Authorization
Code generated in the previous step.

Request: Access Token request using Response: Access Token
Authorization Code Grant

POST /mga/sps/ocauth/ocauth20/token
HTTP/1.1

Host: https://
resourcema.coventrybuildingsociety.co.uk

HTTP/1.1 200 OK

Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

client id: tppclientid

Content-Type: application/x-www-form-
urlencoded

Accept: application/json

{
"access token": "S1AV3Z2hkKG",
"token type": "Bearer",




grant_ type=authorization code
&code=Splx10BeZQQYbYSO6WxSbOIA
&redirect uri=https://api.mytpp.com/cb

&scope=openid accounts
&client id=tppclientid
&client secret=tppclientsecret

Step 4 - Request Account Data

7776000

"expires_ in":

}

1. The AISP can use the Access Token to retrieve Accounts (bulk or specific). The following examples are from the

Account and Transaction API Specification

Where the initial Access Token expires, the AISP can use the Refresh token in order to obtain a fresh Access Token.

Example request against Accounts resource

Request: GET /Accounts API

GET /accounts HTTP/1.1

Authorization: Bearer S1AV32hkKG
x-fapi-financial-id: OB/2017/001
x-fapi-customer-last-logged-time: 2017-06-
13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99
x-fapi-interaction-id: 93bacb48-d2de-4546-
b106-880a5018460d

client id: tppclientid

Accept: application/json

Example request for a specific Account Id

Response: GET /Accounts API

HTTP/1.1 200 OK

x-fapi-interaction-id: 93bac548-d2de-4546-
b106-880a5018460d

Content-Type: application/json

{
"Data": {
"Account": [
{
"AccountId": "22289",
"Currency": "GBP",
"Nickname": "Bills",
"Account": {
"SchemeName" :
"SortCodeAccountNumber",
"Identification":
"80200110203345",
"Name": "Mr Kevin",
"SecondaryIdentification":
"ooo21"
}
]

b
"Links": {
"Self": "/accounts/"

bo
"Meta": {
"TotalPages": 1

Request: GET /Accounts/22289 API

Response: GET /Accounts/22289 API




GET /accounts/22289 HTTP/1.1
Authorization: Bearer S1AV32hkKG
x-fapi-financial-id: 0B/2017/001
x-fapi-customer-last-logged-time: 2017-06-
13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99
x-fapi-interaction-id: 93bac548-d2de-4546-
b106-880a5018460d

client id: tppclientid

Accept: application/json

HTTP/1.1 200 OK

x-fapi-interaction-id: 93bac548-d2de-4546-
b106-880a5018460d

Content-Type: application/json

{
"Data": {
"Account": [
{
"AccountId": "22289",
"Currency": "GBP",
"Nickname": "Bills",
"Account": {
"SchemeName" :
"SortCodeAccountNumber",
"Identification":
"80200110203345",
"Name": "Mr Kevin",
"SecondaryIdentification":
"00021"

by
"Links": {
"Self": "/accounts/22289"
b
"Meta": {
"TotalPages": 1




Success Flows - Funds Confirmation APl Specification

Funds Confirmation with Client Credentials Grant Type and OIDC Hybrid Flow

Tmooaed wie CBIY e somveny = Cofweton of T !

-—-

'
]

e Coveruwncd ends.
1 Cich Fain
B Rt
b o car
' ' . T
| )
i i | |
' ' | \
' ' i \

' ’ ] ]
|
\ ; [U—-rmv*ﬁo-wo“'- ﬁ : :
| ' ll \
: ; FOST o d et oscertak Lroorfeeesye ¢ :
- » |
)
' F--—mmm-—s’
H '
' A ] '
! Il
' J ‘
' ' |
' |
: Ic—- UL 0 IeD TENe WTEed B 0008 T ﬁ :
' T '
' | i
{ AT Saarrier e Sera]) |
| i
: : | Comer | Bloas R At et
! AT 201 ‘wwney Coresets
H |
| e '
H Sewate DOC JWT whr e Setvs Cummrvew Tt Save E_tear |
| 2 w— \
: | [e—h 1 |
i |
H ' |
| i |
] ' '
' : |
WTTP 35T (Smmet Marvunt Lommms wdbw e retmes [} i
WP VST 3 _oAer TaaEn AT TRV | \
H |
| '
| 1 |
Asswrtionn ses i |
= |
U9toe b oo Sowt e Wbttt 'j
Uereal miteuste we e 1
[and ' LOCAIT TR2PR ) BT IAII9 37 0. :
|
P83« nsmmarreumo, e 2 /] : :
L} ]
' |
H Sedongs ' '
1 24 | |
} '
! |
|
| | J 1
' '
! | |
| ' |
' ' '
| POST Amtrcortevetei 1
A
H ]
] ]
' !
! | o aaae . g
|
H '
t } Caapam ¥ oes we s utiog)
' WTTR 231 Farcuarterasang Taoaveiaie (feats
|
H |
H i |
' | |
: | i
' OF1 tovm zrhrarowet Fursdort yrarnfeces T {
' [l
|
' -nva'-o':v.“-'u».-m—u
H T
' )
' ' i |
| ' i '




Client Credentials Grant Type (OAuth 2.0)

Summary
This grant type is used by the CBPII in Step 2 to register an intent for the PSU to allow the CBPII to retrieve their Funds
Confirmation information from CBS.

1. The client_id must be included within the Request Header (if using an elDAS certificate post September 14™ 2019)

2. The CBPIl initiates an Authorization request using valid Client Credentials Grant type and scope(s)

3. The CBS Authorization Server validates the Client Authentication request from the CBPIl and generates an Access
Token response where the request is valid

4. The CBPII uses the Access Token to create a new Funds Confirmation Consent Request resource against the
CBS Resource Server

5. The CBS Resource server responds with the Consentld representing the resource it has created.

OIDC Hybrid Flow

Summary

1. The client_id must be included within the Request Header

2. This is initiated at the end of Step 2 by the CBPII after the Consentld is generated by CBS and returned to the
CBPII.

3. Thisis used in a redirect across the PSU and CBS in Step 3 in order for the PSU to authorize consent with CBS -
for the CBPII to proceed with the requesting Funds Confirmation information.

4. This is used across the CBPIl and CBS in Step 4 by swapping the Authorization Code for an Access Token in order
to retrieve PSU Funds Confirmation information.

Non-Normative HTTP Request and Response Examples

Step 1 - Request Funds Confirmation
There are no Requests and Responses against the Funds Confirmation API in this Step for the PSU, CBPII and CBS.

Step 2 - Setup Funds Confirmation Request
1. CBPII obtains an Access Token using a Client Credentials Grant Type. The scope fundsconfirmations must be
used. When an Access Token expires, the CBPII will need to re-request for another Access Token using the same
request below.

Request: Client Credentials Response: Client Credentials

POST /mga/sps/oauth/oauth20/token Content-Length: 1103

HTTP/1.1 Content-Type: application/json
Host: Date: Mon, 26 Jun 2017 15:18:28 GMT
https://resourcema.coventrybuildingsociety {

.co.uk "access token":

client id: tppclientid "2YotnFZFEJjrlzCsicMWpAA",
Content-Type: application/x-www-form- "expires in": 3600,

urlencoded "token type": "bearer",
Accept: application/json "scope":"fundsconfirmations"
grant type=client credentials

&scope= fundsconfirmations

&client id=tppclientid

&client secret=tppclientsecret




2. CBPII uses the Access Token (with fundsconfirmations scope) from CBS to invoke the Funds Confirmation

APIL This example is sourced directly from the Funds Confirmation API Specification

Request: Funds Confirmation API

POST /funds-confirmation-consents HTTP/1.1
Content-Type: application/json
Authorization: Bearer
2YotnFZFEjr1lzCsicMWpAA

Accept: application/json; charset=utf-8
x-fapi-financial-id: I4mth3R3-4p3r-411t-
hing-5withh33dful
x-fapi-customer-last-logged-time: Mon, 13
Nov 2017 19:49:37 GMT
x-fapi-customer-ip-address: 92.11.92.11
x-fapi-interaction-id: hook5il13-ntIg-4th3-
rP41-3ro535touch3

client id:tppclientid

"Data": {
"DebtorAccount": {
"SchemeName": "AccountNumberSortCode

"Identification": "01234512345678"},
"ExpirationDateTime": "2017-05-
02T00:00:00+00:00"
}

Step 3 — Agree Funds Confirmation Consent

Response: Funds Confirmation API

HTTP/1.1 201 Created

Content-Type: application/json
x-fapi-interaction-id: hook5il13-ntIg-4th3-
rP41-3ro535touch3

"Data": {
"ConsentId": "123456",
"CreationDateTime": "2017-05-
02T00:00:00+00:00",
"Status": "AwaitingAuthorisation",

"StatusUpdateDateTime": "2017-05-
02T00:00:00+00:00",

"ExpirationDateTime": "2017-05-
02T00:00:00+00:00",
"DebtorAccount": {
"SchemeName": "
AccountNumberSortCode",
"Identification": "01234512345678"}

"Self": "/open-banking/v2.0/funds-
confirmation-consents/88379"

2. CBPIl receives a Consentld from CBS. The CBPII then creates an Authorization request (using a signed JWT
Request containing the Consentld as a claim) for the PSU to consent to the Funds Confirmation request directly
with CBS. The request is an OIDC Hybrid flow (requesting for Code and id_token)

Request: OIDC Hybrid Flow

GET /cbs/authorize?

response_ type=code id_ token
&state=afl0ifjsldkj

&scope=openid fundsconfirmations
&nonce=n-086_WzA2Mj

&redirect uri=https://api.mytpp.com/cb

&request=CJleHAiO0jEOOTUxOTk10Dd
uushgpwpOE.51eGFtcGx1TI
iwianRpIjoiM....J1leHAiOjEO.olnx YKAm2Jlrbp
OP8wGhi1BDNHJjVgsDuushgpwpOE

JjVgsD

Response: OIDC Hybrid Flow

HTTP/1.1 302 Found
Location: https://api.mytpp.com/cb#
code=Splx10BeZQQYbYS6WxSbIA
&id token=eyJo0 NiJ9.eyJlc
I6IJIifX0.DeWtd4Qu ... ZXso
&state=af0ifjsldkj




Non-Baseb64 encoded example of the request
parameter object

"alg": "RS256",
"kid": "Gx1lIiwianVgsDuushgjEOOTUxOTk"

{

"iss":
"https://resourcema.coventrybuildingsociet
y.co.uk",

"aud": "s6BhdRkgt3",

"response type": "code id token",

"client id": "s6BhdRkgt3",

"redirect uri":
"https://api.mytpp.com/cb",

"scope": "openid fundsconfirmations",

"state": "afOifjsldkj",

"nonce": "n-0S6_WzA2Mj",

"max age": 86400,

"claims":

{
"userinfo":
{
"openbanking intent id": {"value":
"123456", "essential": true}
b
"id token":
{
"openbanking intent id": {"value":
"123456", "essential": true},
"acr": {"essential": true,
"values":
["urn:openbanking:psd2:sca",

"urn:openbanking:psd2:ca"]}}
}
}

2. The PSU is then redirected to the CBPII. The CBPII will now possess the Authorization Code and ID Token from CBS.
Note at this point, there is no Access Token. The CBPII will now introspect the ID Token and use it as a detached signature
to check:

e The hash of the Authorization Code to prove it hasn't been tampered with during redirect (comparing the hash
value against the c_hash attribute in ID Token)

e The hash of the State to prove it hasn't been tampered with during redirect (comparing the state hash value against
the s_hash attribute in the ID Token)

Example: ID Token

"alg": "RS256",



"kid": "Gx1lIiwianVgsDuushgjEOOTUxOTk"
}

{

"iss": "https://
resourcema.coventrybuildingsociety.co.uk

1]
14

"iat": 1234569795,

"sub": "urn:alphabank:consentId:
123456",

"acr": "urn:openbanking:psd2:ca",

"openbanking intent id":
"urn:alphabank:consentId: 123456",

"aud": "s6BhdRkgt3",

"nonce": "n-0S6_WzA2Mj",

"exp": 1311281970,

"s hash": "76sab5dd",

"c _hash": "asd097d"

3. Once the state and code validations have been confirmed as successful by use of the ID token, the CBPII will proceed to
obtain an Access Token from CBS using the Authorization Code they now possess. The Access Token is required by the
CBPII in order to access PSU Funds Confirmation information. The fundsconfirmations scope should already be associated
with the Authorization Code generated in the previous step.

Request: Access Token request using Response: Access Token
Authorization Code Grant

POST /mga/sps/ocauth/ocauth20/token
HTTP/1.1

Host: https://
resourcema.coventrybuildingsociety.co.uk
client id: tppclientid

Content-Type: application/x-www-form-
urlencoded

HTTP/1.1 200 OK

Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
"access token": "S1AV32hkKG",

Accept: application/json

grant type=authorization code
&code=Splx10BeZQQYbYSO6WxSOIA

&redirect uri=https://api.mytpp.com/cb
&scope=openid fundsconfirmations
&client id=tppclientid

&client secret=tppclientsecret

"token type": "Bearer",
"expires in": 7776000
}

Step 4 — Confirm Funds
1. The CBPII can use the Access Token to create a Funds Confirmation Resource. The following examples are from the
Funds Confirmation API Specification

Where the initial Access Token expires, the CBPII will need to create a new request, CBS have not implemented Refresh
Tokens.

Example request against Funds Confirmations resource



Request: POST /Funds Confirmations API

POST /funds-confirmations HTTP/1.1
client id:tppclientid
Content-Type: application/json
Authorization: Bearer
ltlsatruthunlv3rsdlly
Accept: application/json; charset=utf-8
x-fapi-financial-id: I4mth3R3-4p3r-411t-
hing-5withh33dful
x-fapi-interaction-id: hook5il3-ntIg-4th3-
rP41-3ro535touch3
client id:tppclientid
{
"Data": {
"ConsentId": "123456",
"Reference": "PurchaseOl",
"InstructedAmount": {
"Amount": "20.00",
"Currency": "GBP"

Step 5 — Get Funds Confirmation Consent Status

Response: POST / Funds Confirmations API

HTTP/1.1 201 Created

Content-Type: application/json
x—-fapi-interaction-id: hook5il13-ntIg-4th3-
rP41-3ro535touch3

"Data": {
"FundsConfirmationId": "789012",
"ConsentId": "123456",
"CreationDateTime": "2017-05-
02T00:00:00+00:00",
"FundsAvailable": true,

"Reference": "Purchase0O1l",
"InstructedAmount": {
"Amount": "20.00",
"Currency": "GBP"
}
by
"Links": {
"Self": "/open-banking/v2.0/funds-
confirmations/789012"
bo
"Meta": {}

The CBPII can use the Access Token to retrieve Funds Confirmation Consent Resource. The following examples are

from the Funds Confirmation Consents API Specification

Where the initial Access Token expires, the CBPII will need to create a new request, CBS have not implemented Refresh

Tokens.

Example request against Confirm Funds Consent resource

Request: GET /Funds Confirmations API

GET /funds-confirmation-consents/123456
HTTP/1.1

Authorization: Bearer Jhingapulaav
x-fapi-financial-id: 0OB/2017/001
x-fapi-interaction-id: 93bac548-d2de-4546-
b106-880a5018460d

client id:tppclientid
Accept: application/json

Response: POST / Funds Confirmations API

HTTP/1.1 200 OK

x—fapi-interaction-id: 93bac548-d2de-4546-
p106-880a5018460d

Content-Type: application/json

{
"Data": {

"ConsentId": "123456",

"CreationDateTime": "2017-05-
02T00:00:00+00:00",

"Status": "AwaitingAuthorisation",

"StatusUpdateDateTime": "2017-05-
02T00:00:00+00:00",



"ExpirationDateTime": "2017-05-
02T00:00:00+00:00",
"DebtorAccount": {
"SchemeName": "UK.OBIE.IBAN",
"Identification": "GB76LOYD309493012
73801",
"Secondaryldentification": "Roll
56988"
}

b
"Links": {
"Self": "/open-banking/v2.0/funds-
confirmation-consents/123456"
by
"Meta": {}




Edge Cases

This section provides further information on potential edge cases that may arise via the implementation of Accounts and

Payments API Specifications.

PSU Consent Authorization Interrupt with CBS

Workflow Ste

Step 3: Authorize
Consent

API Scenario

Payments Due to an
interruption, the PSU
does not complete
the Authorization of
the Payment with
CBS when redirected
by the PISP (after
creating a Paymentld)

Impact

Payment Status remains as
Pending or
AcceptedTechnicalValidation

The PISP may
choose to implement
a separate follow up
process which
reminds the PSU to
complete their
Authorization
consent steps with
CBS.

Due to an
interruption, the PSU
does not complete
the Authorization of
the Accounts request
with CBS when
redirected by the
AISP (after creating
an
AccountRequestld)

Accounts Step 3: Authorize

Consent

Account Status remains as
AwaitingAuthorisation

The AISP may
choose to implement
a separate follow up
process which
reminds the PSU to
complete their
Authorization
consent steps with
CBS




