
Confidential 1

Coventry Building Society

Security Profile v2.0

Contents
Coventry Building Society ..0

Security Profile v2.0 ...0

Version control ...4

Release Note..4

Overview ..4

Authentication...4

Request Header ...5

Client Types ...5

Grant Types..5

OIDC Hybrid Flow (response_type=code id_token) ...5

Client Credentials Grant Type using multiple scopes (scope=accounts payments) ..5

ID Token ...6

Access Tokens issued through Client Credentials Grant ..7

Access Tokens issued through Authorization Code Grant ..7

Authorization Codes ...7

Success Flows - Payment API Specification ...8

Payment Initiation with Client Credentials Grant Type and OIDC Hybrid Flow ..8

Client Credentials Grant Type (OAuth 2.0) ..9

OIDC Hybrid Flow ...9

Non-Normative HTTP Request and Response Examples ...9

Success Flows - Account API Specification .. 17

Account and Transaction Information with Client Credentials Grant Type and OIDC Hybrid Flow 17

Client Credentials Grant Type (OAuth 2.0) ... 18

OIDC Hybrid Flow .. 18

Non-Normative HTTP Request and Response Examples .. 18

Success Flows – Funds Confirmation API Specification .. 24

Funds Confirmation with Client Credentials Grant Type and OIDC Hybrid Flow .. 24

 24

Client Credentials Grant Type (OAuth 2.0) ... 25

OIDC Hybrid Flow .. 25

Non-Normative HTTP Request and Response Examples .. 25

Edge Cases ... 31

PSU Consent Authorization Interrupt with CBS .. 31

Version control

Version Date Updated by Changes made

1.0 07 Feb 2018 Coventry Building Society Baseline version

2.0 20 Feb 2019 Coventry Building Society Update to utilise eIDAS
certificates

Release Note

This release note explains what's new in The CBS Security Profile between versions.

Version 2.0 – As per the RTS, TPPs with eIDAS certificates must be allowed access to CBS APIs without requiring a

further certificate. On that basis CBS has decided to only accept eIDAS certificates from September 14
th
 2019

There will be a 3 month period prior to the September deadline where a TPP with an existing CBS certificate will be able to

use either their CBS certificate or eIDAS certificate. To allow this CBS will be communicating with existing on-boarded

TPPs the information required to allow dual access.

CBS provided certificates will be revoked and only eIDAS certificates accepted from September 14
th
 2019.

The migration process to eIDAS certificates will be communicated to TPPs who on-boarded with CBS prior to September

14
th
 2019 to facilitate a smooth transition.

Overview

This specification describes the authentication and authorisation given to Third Party Providers (TPPs) to receive

payments, obtain funds confirmation or access account information from Coventry Building Society (CBS) accounts by our

customers.

The API endpoints described here allow an AISP to:

 Create and retrieve TPP payment authorisations

 Create, retrieve and revoke TPP account access authorisations

CBS has adopted the same standards as have been implemented by Open Banking. These can be found here:

https://www.openbanking.org.uk/standards/

Authentication

Consent leverages the OAuth 2.0 authorization framework, allowing customers of CBS to log into applications to grant

authorisation to access their account data or to initiate payments from their accounts without exposing their credentials to

the TPP.

https://www.openbanking.org.uk/standards/

In addition to OAuth 2.0, OpenID Connect identity layer has been used to pass the AccountRequestId, PaymentId and

ConsentId (created by the TPP when registering an intent to access data) within the Hybrid Flow, allowing CBS to link the

intent created by the TPP to the customer who will authenticate and authorize the intent.

Request Header

Every request must include a header field called client_id with the value set to the clientId provided by CBS

POST https://resourcema.coventrybuildingsociety.co.uk/mga/sps/oauth/oauth20/token HTTP/1.1
client_id: {clientId value}

Client Types

As per OAuth2 specification, the Confidential Client Type has been implemented. Access to CBS API’s is based on TPPs

authenticating securely with our Authorization Server. TPP’s must maintain the confidentiality of the client credentials

which CBS will provide once a TPP successfully on-boards with CBS.

All communication between the TPP and CBS is over TLS 1.2 MA using eIDAS QWAC and QSEALC PSD2 certificates.

Grant Types

OIDC Hybrid Flow (response_type=code id_token)

Both the Payments, Funds Confirmation and Accounts APIs illustrate the use of request_type=code id_token for the OIDC

Hybrid Flow implementation.

Client Credentials Grant Type using multiple scopes (scope=accounts payments)

 The Client Credentials Grant Type is used across both Payments, Funds Confirmation and Account APIs only

when the TPP (AISP/PISP/CBPII) requires an Access Token (on behalf of itself) in order to access a Payment,

Funds Confirmation or Accounts API resource e.g.

o Payments:

POST /payments

GET /payment-submissions/{PaymentSubmissionId}

o Accounts:

POST /account-requests

o Funds Confirmation:

POST /funds-confirmation-consents

 A TPP may therefore choose to request for either a single scope e.g. accounts or for multiple scope(s) e.g.

accounts payments as the TPP may want to use the same Access Token across both APIs.

 Only valid API scopes will be accepted when generating an Access Token (accounts payments

fundsconfirmations).

 Access tokens generated by a Client Credentials grant may not return any refresh tokens (as per the OAuth 2.0

specification)

 Access tokens generated by a Client Credentials grant will expire after 3600 seconds.

Example – Client Credentials:

https://resourcema.coventrybuildingsociety.co.uk/mga/sps/oauth/oauth20/token

Request must include:

grant_type=”Client Credentials”

scope=”openId accounts”

client_id={clientId provided by CBS when TPP on-boarded}

client_secret={client secret provided by CBS when TPP on-boarded}

ID Token

 ID Tokens must be validated by the TPP (AISP/PISP) as outlined within the OIDC Errata 1 Specification

 TPPs must use the openbanking_intent_id claim to populate and retrieve the IntentID (PaymentID for Payments

API and AccountRequestId for the Accounts API) for any required validation.

 The full set of claims that can be represented within an ID Token are documented in the Request Object and ID

Token Section of the Security Profile.

 ID Token claims (exp and iat) determine its validity.

 Returned with the Authorization Code when the Hybrid flow (code id_token) is initiated.

https://resourcema.coventrybuildingsociety.co.uk/mga/sps/oauth/oauth20/token
http://openid.net/specs/openid-connect-core-1_0.html#HybridAuthResponseValidation

Access Tokens issued through Client Credentials Grant

 Only valid API scopes will be accepted when generating an Access Token (accounts payments

fundsconfirmations).

 Access tokens generated by a Client Credentials grant may not return any refresh tokens (as per the OAuth 2.0

specification)

 Access tokens generated by a Client Credentials grant for will expire after 3600 seconds (1 hour).

Access Tokens issued through Authorization Code Grant

 For the Payments and Accounts APIs, the Access Token must be obtained within a Secure, Server Side Context

between the TPP (AISP / PISP) and CBS.

 Access Tokens must be validated by the TPP (AISP/PISP) as outlined within the OIDC Errata 1 Specification

 The expires_in attribute returned by the Authorization Server when an Access Token is generated determines its

validity.

 Our Access Tokens for Payment Initiation are set to expire after 3600 seconds (1 hour)

 Our Access Tokens for Account Information and Funds Confirmation are set to expire after 90 days, after which a

new account or funds confirmation request should be initiated. We do not currently support Refresh Tokens.

Authorization Codes

 Authorization Codes must be validated by the TPP (AISP/PISP) as outlined within the OIDC Errata 1 Specification

 OAuth 2.0 Specification suggests an Authorization Code should be short lived to a maximum of 10 minutes. Any

codes exceeding this limit to be rejected.

 CBS authorization codes will expire after 5 minutes.

http://openid.net/specs/openid-connect-core-1_0.html#HybridAuthResponseValidation
http://openid.net/specs/openid-connect-core-1_0.html#HybridAuthResponseValidation
https://tools.ietf.org/html/rfc6749#section-4.1.2

Success Flows - Payment API Specification

Payment Initiation with Client Credentials Grant Type and OIDC Hybrid Flow

Client Credentials Grant Type (OAuth 2.0)

Summary

This grant type is used by the PISP in Step 2 to setup a single payment with CBS.

1. The client_id must be included within the Request Header

2. The PISP initiates an Authorization request using valid Client Credentials Grant type and scope(s)

3. The CBS Authorization Server validates the Client Authentication request from the PISP and generates an Access

Token response where the request is valid

4. The PISP uses the Access Token to create a new Payment resource against the CBS Resource Server

5. The CBS Resource server responds with the PaymentId for the resource it has created.

6. The Client Credentials Grant may optionally be used by the PISP in Step 5 to retrieve the status of a Payment or

Payment-Submission where no active Access Token is available.

OIDC Hybrid Flow

Summary

 The client_id must be included within the Request Header

 The Hybrid flow is the recommendation from the OB Security Profile and the FAPI Specification for R/W. The
Hybrid flow prevents IdP mixup attacks as documented by Nat Sakimura - Cut and Paste OAuth 2.0 Attack

 This is initiated at the end of Step 2 by the PISP after the PaymentId is generated by CBS and returned to the

PISP.

 This is used in a redirect across the PSU and CBS in Step 3 in order for the PSU to authorize consent with CBS -

for the PISP to proceed with the Payment.

 This is used across the PISP and CBS in Step 4 by exchanging the Authorization Code for an Access Token in

order to create the Payment-Submission resource.

Non-Normative HTTP Request and Response Examples

Step 1 - Request Payment Initiation

There are no Requests and Responses against the Payments API in this Step for the PSU, PISP and CBS.

Step 2 - Setup Single Payment Initiation

1. PISP obtains an Access Token using a Client Credentials Grant Type. The scope payments must be used. When

an Access Token expires, the PISP will need to re-request for another Access Token using the same request

below.

Request: Client Credentials Response: Client Credentials

POST / mga/sps/oauth/oauth20/token

HTTP/1.1

Host: https://

resourcema.coventrybuildingsociety.co.uk

client_id: tppclientid

Content-Type: application/x-www-form-

urlencoded

Accept: application/json

grant_type=client_credentials

&scope=openid payments

&client_id=tppclientid

Content-Length: 1103

Content-Type: application/json

Date: Mon, 26 Jun 2017 15:18:28 GMT

{

 "access_token":

"2YotnFZFEjr1zCsicMWpAA",

 "expires_in": 3600,

 "token_type": "bearer",

 "scope":"payments"

}

https://tools.ietf.org/html/rfc6749#section-4.4
http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth
https://nat.sakimura.org/2016/01/25/cut-and-pasted-code-attack-in-oauth-2-0-rfc6749/

&client_secret=tppclientsecret

2. PISP uses the Access Token (with payments scope) from CBS to invoke the Payments API.

Request: Payments API Response: Payments API

POST /payments HTTP/1.1

Authorization: Bearer

2YotnFZFEjr1zCsicMWpAA

x-idempotency-key: FRESCO.21302.GFX.20

x-fapi-financial-id: OB/2017/001

x-fapi-customer-last-logged-time: 2017-06-

13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

client_id: tppclientid

Content-Type: application/json

Accept: application/json

{

 "Data": {

 "Initiation": {

 "InstructionIdentification":

"ACME412",

 "EndToEndIdentification":

"FRESCO.21302.GFX.20",

 "InstructedAmount": {

 "Amount": "165.88",

 "Currency": "GBP"

 },

 "CreditorAccount": {

 "SchemeName":

"SortCodeAccountNumber",

 "Identification":

"08080021325698",

 "Name": "ACME Inc",

 "SecondaryIdentification": "0002"

 },

 "RemittanceInformation": {

 "Reference": "FRESCO-101",

 "Unstructured": "Internal ops code

5120101"

 }

 }

 },

 "Risk": {

 "PaymentContextCode":

"EcommerceGoods",

 "MerchantCategoryCode": "5967",

 "MerchantCustomerIdentification":

"053598653254",

 "DeliveryAddress": {

 "AddressLine": [

 HTTP/1.1 201 Created

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

Content-Type: application/json

{

 "Data": {

 "PaymentId": "612d9e8e-074b-490b-bc8a-

0df5287a0dbc",

 "Status":

"AcceptedTechnicalValidation",

 "CreationDateTime": "2017-06-

05T15:15:13+00:00",

 "Initiation": {

 "InstructionIdentification":

"ACME412",

 "EndToEndIdentification":

"FRESCO.21302.GFX.20",

 "InstructedAmount": {

 "Amount": "165.88",

 "Currency": "GBP"

 },

 "CreditorAccount": {

 "SchemeName":

"SortCodeAccountNumber",

 "Identification":

"08080021325698",

 "Name": "ACME Inc",

 "SecondaryIdentification": "0002"

 },

 "RemittanceInformation": {

 "Reference": "FRESCO-101",

 "Unstructured": "Internal ops code

5120101"

 }

 }

 },

 "Risk": {

 "PaymentContextCode":

"EcommerceGoods",

 "MerchantCategoryCode": "5967",

 "MerchantCustomerIdentification":

"053598653254",

 "DeliveryAddress": {

 "AddressLine": [

 "Flat 7",

 "Acacia Lodge"

],

 "Flat 7",

 "Acacia Lodge"

],

 "StreetName": "Acacia Avenue",

 "BuildingNumber": "27",

 "PostCode": "GU31 2ZZ",

 "TownName": "Sparsholt",

 "CountySubDivision": [

 "Wessex"

],

 "Country": "UK"

 }

 }

}

 "StreetName": "Acacia Avenue",

 "BuildingNumber": "27",

 "PostCode": "GU31 2ZZ",

 "TownName": "Sparsholt",

 "CountySubDivision": [

 "Wessex"

],

 "Country": "UK"

 }

 },

 "Links": {

 "Self": "/open-banking/open-

banking/v2.0/payments/58923"

 },

 "Meta": {}

}

Step 3 - Authorize Consent

1. PISP receives a PaymentId from CBS. The PISP then creates an Authorization request (using a signed JWT

Request containing the PaymentID as a claim) for the PSU to consent to the Payment directly with CBS. The

request is an OIDC Hybrid flow (requesting for Code and id_token). The same redirect URL which was submitted

to CBS when the TPP on-boarded must be used.

Request: OIDC Hybrid Flow Response: OIDC Hybrid Flow

GET /cbs/authorize?

client_id: tppclientid

response_type=code id_token

&state=af0ifjsldkj

&scope=openid payments

&nonce=n-0S6_WzA2Mj

&redirect_uri=https://api.mytpp.com/cb

&request=CJleHAiOjE0OTUxOTk1ODd.....JjVqsD

uushgpwp0E.5leGFtcGxlI

iwianRpIjoiM....JleHAiOjE0.olnx_YKAm2J1rbp

OP8wGhi1BDNHJjVqsDuushgpwp0E

 HTTP/1.1 302 Found

 Location: https://api.mytpp.com/cb#

 code=SplxlOBeZQQYbYS6WxSbIA

 &id_token=eyJ0 ... NiJ9.eyJ1c ...

I6IjIifX0.DeWt4Qu ... ZXso

 &state=af0ifjsldkj

Non-Base64 encoded example of the request

parameter object

{

 "alg": "",

 "kid": "GxlIiwianVqsDuushgjE0OTUxOTk"

}

.

{

 "iss": "https://

resourcema.coventrybuildingsociety.co.uk

",

 "aud": "s6BhdRkqt3",

 "response_type": "code id_token",

 "client_id": "s6BhdRkqt3",

 "redirect_uri":

"https://api.mytpp.com/cb",

 "scope": "openid payments accounts",

 "state": "af0ifjsldkj",

 "nonce": "n-0S6_WzA2Mj",

 "max_age": 86400,

 "claims":

 {

 "userinfo":

 {

 "openbanking_intent_id": {"value":

"612d9e8e-074b-490b-bc8a-0df5287a0dbc",

"essential": true}

 },

 "id_token":

 {

 "openbanking_intent_id": {"value":

"612d9e8e-074b-490b-bc8a-0df5287a0dbc",

"essential": true},

 "acr": {"essential": true,

 "values":

["urn:openbanking:psd2:sca",

"urn:openbanking:psd2:ca"]}}}

 }

 }

}

2. The PSU is then redirected to the PISP. The PISP will now possess the Authorization Code and ID Token from CBS.

Note at this point, there is no Access Token. The PISP will now introspect the ID Token and use it to check:

 The hash of the Authorization Code to prove it hasn't been tampered with during redirect (comparing the hash

value against the c_hash attribute in ID Token)

 The hash of the State to prove it hasn't been tampered with during redirect (comparing the state hash value against

the s_hash attribute in the ID Token)

Example: ID Token

{

 "alg": "RS256",

 "kid": "12345",

 "typ": "JWT"

}

.

{

 "iss": "https://

resourcema.coventrybuildingsociety.co.uk

",

 "iat": 1234569795,

 "sub": "urn:alphabank:payment:58923",

 "acr": "urn:openbanking:psd2:ca",

 "openbanking_intent_id":

"urn:alphabank:payment: 612d9e8e-074b-490b-
bc8a-0df5287a0dbc",

 "aud": "s6BhdRkqt3",

 "nonce": "n-0S6_WzA2Mj",

 "exp": 1311281970,

 "s_hash": "76sa5dd",

 "c_hash": "asd097d"

 }

.

{

2. Once the state and code validations have been confirmed as successful by use of the ID token, the PISP will

proceed to obtain an Access Token from CBS using the Authorization Code they now possess.. The Access Token

is required by the PISP in order to submit the Payment on behalf of the PSU. The payments scope should already

be associated with the Authorization Code generated in the previous step.

Request: Access Token Request using

Authorization Code Grant

 Response: Access Token

POST / mga/sps/oauth/oauth20/token

HTTP/1.1

Host: https://

resourcema.coventrybuildingsociety.co.uk

client_id: tppclientid

Content-Type: application/x-www-form-

urlencoded

Accept: application/json

grant_type=authorization_code

&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https://api.mytpp.com/cb

&scope=openid payments

&client_id=tppclientid

&client_secret=tppclientsecret

 HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

Pragma: no-cache

{

 "access_token": "SlAV32hkKG",

 "token_type": "Bearer",

 "expires_in": 3600

}

Step 4 - Create Payment-Submission

1. The PISP has an Access Token which can be used to Create a Payment-Submission (Step 4). The PISP must obtain the

PaymentId (Intent-ID) so that the Payment request is associated with the correct PaymentId. This can be sourced from:

1. The PaymentId claim from the ID Token (default). The PISP will need to locate the claim attribute associated with

the PaymentId.

The PISP can now invoke the /payment-submissions endpoint to commit the Payment using the Access Token and

PaymentId in the payload of the request. This example is sourced from the Payment Initiation API Specification

Request: payment-submissions Response: payment-submissions

POST /payment-submissions HTTP/1.1

Authorization: Bearer SlAV32hkKG

 HTTP/1.1 201 Created

x-fapi-interaction-id: 93bac548-d2de-4546-

x-idempotency-key: FRESNO.1317.GFX.22

x-fapi-financial-id: OB/2017/001

x-fapi-customer-last-logged-time: 2017-06-

13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

client_id: tppclientid

Content-Type: application/json

Accept: application/json

{

 "Data": {

 "PaymentId": "612d9e8e-074b-490b-bc8a-

0df5287a0dbc",

 "Initiation": {

 "InstructionIdentification":

"ACME412",

 "EndToEndIdentification":

"FRESCO.21302.GFX.20",

 "InstructedAmount": {

 "Amount": "165.88",

 "Currency": "GBP"

 },

 "CreditorAccount": {

 "SchemeName":

"SortCodeAccountNumber",

 "Identification":

"08080021325698",

 "Name": "ACME Inc",

 "SecondaryIdentification": "0002"

 },

 "RemittanceInformation": {

 "Reference": "FRESCO-101",

 "Unstructured": "Internal ops code

5120101"

 }

 }

 },

 "Risk": {

 "PaymentContextCode":

"EcommerceGoods",

 "MerchantCategoryCode": "5967",

 "MerchantCustomerIdentification":

"053598653254",

 "DeliveryAddress": {

 "AddressLine": [

 "Flat 7",

 "Acacia Lodge"

],

 "StreetName": "Acacia Avenue",

 "BuildingNumber": "27",

 "PostCode": "GU31 2ZZ",

 "TownName": "Sparsholt",

 "CountySubDivision": [

 "Wessex"

],

b106-880a5018460d

Content-Type: application/json

{

 "Data": {

 "PaymentSubmissionId": "58923-001",

 "PaymentId": "612d9e8e-074b-490b-bc8a-

0df5287a0dbc",

 "Status":

"AcceptedSettlementInProcess",

 "CreationDateTime": "2017-06-

05T15:15:22+00:00"

 },

 "Links": {

 "Self": "/open-banking/v2.0/payment-

submissions/58923-001"

 },

 "Meta": {}

}

 "Country": "UK"

 }

 }

}

Step 5 - Get Payment-Submission Status

1. The PISP can query for the status of a Payment-Submission by invoking the /payment-submissions using the

known PaymentSubmissionId. This can use an existing access token with payments scope or the PISP can obtain

a fresh access token by replaying the client credentials grant request as per Step 2 - Setup Single Payment

Initiation.

Request: payment-

submissions/{PaymentSubmissionId}

 Response: payment-submissions

GET /payment-submissions/58923-001

HTTP/1.1

Authorization: Bearer SlAV32hkKG

x-fapi-financial-id: OB/2017/001

x-fapi-customer-last-logged-time: 2017-06-

13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

client_id: tppclientid

Accept: application/json

 HTTP/1.1 200 OK

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

Content-Type: application/json

{

 "Data": {

 "PaymentSubmissionId": "58923-001",

 "PaymentId": "612d9e8e-074b-490b-bc8a-

0df5287a0dbc",

 "Status":

"AcceptedSettlementInProcess",

 "CreationDateTime": "2017-06-

05T15:15:22+00:00"

 },

 "Links": {

 "Self": "/open-banking/v2.0/payment-

submissions/58923-001"

 },

 "Meta": {}

}

2. A PISP can also optionally query for the status of a Payment resource by invoking /payments/{PaymentId}. This

can use an existing access token with payments scope or the PISP can obtain a fresh access token by replaying

the client credentials grant request as per Step 2 - Setup Single Payment Initiation.

Success Flows - Account API Specification

Account and Transaction Information with Client Credentials Grant Type and OIDC Hybrid Flow

Client Credentials Grant Type (OAuth 2.0)

Summary

This grant type is used by the AISP in Step 2 to register an intent for the PSU to allow the AISP to retrieve their Account

information from CBS.

1. The client_id must be included within the Request Header

2. The AISP initiates an Authorization request using valid Client Credentials Grant type and scope(s)

3. The CBS Authorization Server validates the Client Authentication request from the AISP and generates an Access

Token response where the request is valid

4. The AISP uses the Access Token to create a new Account Request resource against the CBS Resource Server

5. The CBS Resource server responds with the AccountRequestId representing the resource it has created.

OIDC Hybrid Flow

Summary

1. The client_id must be included within the Request Header

2. This is initiated at the end of Step 2 by the AISP after the AccountRequestId is generated by CBS and returned to

the AISP.

3. This is used in a redirect across the PSU and CBS in Step 3 in order for the PSU to authorize consent with CBS -

for the AISP to proceed with the requesting Account information.

4. This is used across the AISP and CBS in Step 4 by swapping the Authorization Code for an Access Token in order

to retrieve PSU Account information.

Non-Normative HTTP Request and Response Examples

Step 1 - Request Account Information

There are no Requests and Responses against the Accounts and Transactions API in this Step for the PSU, AISP and

CBS.

Step 2 - Setup Account Request

1. AISP obtains an Access Token using a Client Credentials Grant Type. The scope accounts must be used. When

an Access Token expires, the AISP will need to re-request for another Access Token using the same request

below.

Request: Client Credentials Response: Client Credentials

POST / mga/sps/oauth/oauth20/token

HTTP/1.1

Host:

https://resourcema.coventrybuildingsociety

.co.uk

client_id: tppclientid

Content-Type: application/x-www-form-

urlencoded

Accept: application/json

grant_type=client_credentials

&scope=openid accounts

&client_id=tppclientid

&client_secret=tppclientsecret

 Content-Length: 1103

Content-Type: application/json

Date: Mon, 26 Jun 2017 15:18:28 GMT

{

 "access_token":

"2YotnFZFEjr1zCsicMWpAA",

 "expires_in": 3600,

 "token_type": "bearer",

 "scope":"accounts"

}

2. AISP uses the Access Token (with accounts scope) from CBS to invoke the Accounts API. This example is

sourced directly from the Account and Transactions API Specification

Request: Accounts API Response: Accounts API

POST /account-requests HTTP/1.1

Authorization: Bearer

2YotnFZFEjr1zCsicMWpAA

x-fapi-financial-id: OB/2017/001

x-fapi-customer-last-logged-time: 2017-06-

13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

client_id: tppclientid

Content-Type: application/json

Accept: application/json

{

 "Data": {

 "Permissions": [

 "ReadAccountsDetail",

 "ReadBalances",

 "ReadBeneficiariesDetail",

 "ReadDirectDebits",

 "ReadProducts",

 "ReadStandingOrdersDetail",

 "ReadTransactionsCredits",

 "ReadTransactionsDebits",

 "ReadTransactionsDetail"

],

 "ExpirationDateTime": "2017-05-

02T00:00:00+00:00",

 "TransactionFromDateTime": "2017-05-

03T00:00:00+00:00",

 "TransactionToDateTime": "2017-12-

03T00:00:00+00:00"

 },

 "Risk": {}

}

 HTTP/1.1 201 Created

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

Content-Type: application/json

{

 "Data": {

 "AccountRequestId": "612d9e8e-074b-

490b-bc8a-0df5287a0dbc",

 "Status": "AwaitingAuthorisation",

 "CreationDateTime": "2017-05-

02T00:00:00+00:00",

 "Permissions": [

 "ReadAccountsDetail",

 "ReadBalances",

 "ReadBeneficiariesDetail",

 "ReadDirectDebits",

 "ReadProducts",

 "ReadStandingOrdersDetail",

 "ReadTransactionsCredits",

 "ReadTransactionsDebits",

 "ReadTransactionsDetail"

],

 "ExpirationDateTime": "2017-08-

02T00:00:00+00:00",

 "TransactionFromDateTime": "2017-05-

03T00:00:00+00:00",

 "TransactionToDateTime": "2017-12-

03T00:00:00+00:00"

 },

 "Risk": {},

 "Links": {

 "Self": "/account-requests/612d9e8e-

074b-490b-bc8a-0df5287a0dbc"

 },

 "Meta": {

 "TotalPages": 1

 }

}

Step 3 - Authorize Consent

1. AISP receives a AccountRequestId from CBS. The AISP then creates an Authorization request (using a signed

JWT Request containing the AccountRequestId as a claim) for the PSU to consent to the Account request directly

with CBS. The request is an OIDC Hybrid flow (requesting for Code and id_token)

Request: OIDC Hybrid Flow Response: OIDC Hybrid Flow

GET /cbs/authorize?

response_type=code id_token

&client_id=s6BhdRkqt3

&state=af0ifjsldkj

&scope=openid accounts

&nonce=n-0S6_WzA2Mj

&redirect_uri=https://api.mytpp.com/cb

&request=CJleHAiOjE0OTUxOTk1ODd.....JjVqsD

uushgpwp0E.5leGFtcGxlI

iwianRpIjoiM....JleHAiOjE0.olnx_YKAm2J1rbp

OP8wGhi1BDNHJjVqsDuushgpwp0E

 HTTP/1.1 302 Found

 Location: https://api.mytpp.com/cb#

 code=SplxlOBeZQQYbYS6WxSbIA

 &id_token=eyJ0 ... NiJ9.eyJ1c ...

I6IjIifX0.DeWt4Qu ... ZXso

 &state=af0ifjsldkj

Non-Base64 encoded example of the request

parameter object

{

 "alg": "RS256",

 "kid": "GxlIiwianVqsDuushgjE0OTUxOTk"

}

.

{

 "iss":

"https://resourcema.coventrybuildingsociet

y.co.uk",

 "aud": "s6BhdRkqt3",

 "response_type": "code id_token",

 "client_id": "s6BhdRkqt3",

 "redirect_uri":

"https://api.mytpp.com/cb",

 "scope": "openid accounts",

 "state": "af0ifjsldkj",

 "nonce": "n-0S6_WzA2Mj",

 "max_age": 86400,

 "claims":

 {

 "userinfo":

 {

 "openbanking_intent_id": {"value":

"612d9e8e-074b-490b-bc8a-0df5287a0dbc",

"essential": true}

 },

 "id_token":

 {

 "openbanking_intent_id": {"value":

"612d9e8e-074b-490b-bc8a-0df5287a0dbc",

"essential": true},

 "acr": {"essential": true,

 "values":

["urn:openbanking:psd2:sca",

"urn:openbanking:psd2:ca"]}}

 }

 }

}

2. The PSU is then redirected to the AISP. The AISP will now possess the Authorization Code and ID Token from CBS.

Note at this point, there is no Access Token. The AISP will now introspect the ID Token and use it as a detached signature

to check:

 The hash of the Authorization Code to prove it hasn't been tampered with during redirect (comparing the hash

value against the c_hash attribute in ID Token)

 The hash of the State to prove it hasn't been tampered with during redirect (comparing the state hash value against

the s_hash attribute in the ID Token)

Example: ID Token

{

 "alg": "RS256",

 "kid": "GxlIiwianVqsDuushgjE0OTUxOTk"

}

.

{

 "iss": "https://

resourcema.coventrybuildingsociety.co.uk

",

 "iat": 1234569795,

 "sub":

"urn:alphabank:accountRequestId:88379",

 "acr": "urn:openbanking:psd2:ca",

 "openbanking_intent_id":

"urn:alphabank:accountRequestId:612d9e8e-

074b-490b-bc8a-0df5287a0dbc",

 "aud": "s6BhdRkqt3",

 "nonce": "n-0S6_WzA2Mj",

 "exp": 1311281970,

 "s_hash": "76sa5dd",

 "c_hash": "asd097d"

 }

3. Once the state and code validations have been confirmed as successful by use of the ID token, the AISP will proceed to

obtain an Access Token from CBS using the Authorization Code they now possess. The Access Token is required by the

AISP in order to access PSU Account information. The accounts scope should already be associated with the Authorization

Code generated in the previous step.

Request: Access Token request using

Authorization Code Grant

 Response: Access Token

POST / mga/sps/oauth/oauth20/token

HTTP/1.1

Host: https://

resourcema.coventrybuildingsociety.co.uk

client_id: tppclientid

Content-Type: application/x-www-form-

urlencoded

Accept: application/json

 HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

Pragma: no-cache

{

 "access_token": "SlAV32hkKG",

 "token_type": "Bearer",

grant_type=authorization_code

&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https://api.mytpp.com/cb

&scope=openid accounts

&client_id=tppclientid

&client_secret=tppclientsecret

 "expires_in": 7776000

}

Step 4 - Request Account Data

1. The AISP can use the Access Token to retrieve Accounts (bulk or specific). The following examples are from the

Account and Transaction API Specification

Where the initial Access Token expires, the AISP can use the Refresh token in order to obtain a fresh Access Token.

Example request against Accounts resource

Request: GET /Accounts API Response: GET /Accounts API

GET /accounts HTTP/1.1

Authorization: Bearer SlAV32hkKG

x-fapi-financial-id: OB/2017/001

x-fapi-customer-last-logged-time: 2017-06-

13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

client_id: tppclientid

Accept: application/json

 HTTP/1.1 200 OK

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

Content-Type: application/json

{

 "Data": {

 "Account": [

 {

 "AccountId": "22289",

 "Currency": "GBP",

 "Nickname": "Bills",

 "Account": {

 "SchemeName":

"SortCodeAccountNumber",

 "Identification":

"80200110203345",

 "Name": "Mr Kevin",

 "SecondaryIdentification":

"00021"

 }

]

 },

 "Links": {

 "Self": "/accounts/"

 },

 "Meta": {

 "TotalPages": 1

 }

}

Example request for a specific Account Id

Request: GET /Accounts/22289 API Response: GET /Accounts/22289 API

GET /accounts/22289 HTTP/1.1

Authorization: Bearer SlAV32hkKG

x-fapi-financial-id: OB/2017/001

x-fapi-customer-last-logged-time: 2017-06-

13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

client_id: tppclientid

Accept: application/json

 HTTP/1.1 200 OK

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

Content-Type: application/json

{

 "Data": {

 "Account": [

 {

 "AccountId": "22289",

 "Currency": "GBP",

 "Nickname": "Bills",

 "Account": {

 "SchemeName":

"SortCodeAccountNumber",

 "Identification":

"80200110203345",

 "Name": "Mr Kevin",

 "SecondaryIdentification":

"00021"

 }

 }

]

 },

 "Links": {

 "Self": "/accounts/22289"

 },

 "Meta": {

 "TotalPages": 1

 }

}

Success Flows – Funds Confirmation API Specification

Funds Confirmation with Client Credentials Grant Type and OIDC Hybrid Flow

Client Credentials Grant Type (OAuth 2.0)

Summary

This grant type is used by the CBPII in Step 2 to register an intent for the PSU to allow the CBPII to retrieve their Funds

Confirmation information from CBS.

1. The client_id must be included within the Request Header (if using an eIDAS certificate post September 14
th
 2019)

2. The CBPII initiates an Authorization request using valid Client Credentials Grant type and scope(s)

3. The CBS Authorization Server validates the Client Authentication request from the CBPII and generates an Access

Token response where the request is valid

4. The CBPII uses the Access Token to create a new Funds Confirmation Consent Request resource against the

CBS Resource Server

5. The CBS Resource server responds with the ConsentId representing the resource it has created.

OIDC Hybrid Flow

Summary

1. The client_id must be included within the Request Header

2. This is initiated at the end of Step 2 by the CBPII after the ConsentId is generated by CBS and returned to the

CBPII.

3. This is used in a redirect across the PSU and CBS in Step 3 in order for the PSU to authorize consent with CBS -

for the CBPII to proceed with the requesting Funds Confirmation information.

4. This is used across the CBPII and CBS in Step 4 by swapping the Authorization Code for an Access Token in order

to retrieve PSU Funds Confirmation information.

Non-Normative HTTP Request and Response Examples

Step 1 - Request Funds Confirmation

There are no Requests and Responses against the Funds Confirmation API in this Step for the PSU, CBPII and CBS.

Step 2 - Setup Funds Confirmation Request

1. CBPII obtains an Access Token using a Client Credentials Grant Type. The scope fundsconfirmations must be

used. When an Access Token expires, the CBPII will need to re-request for another Access Token using the same

request below.

Request: Client Credentials Response: Client Credentials

POST / mga/sps/oauth/oauth20/token

HTTP/1.1

Host:

https://resourcema.coventrybuildingsociety

.co.uk

client_id: tppclientid

Content-Type: application/x-www-form-

urlencoded

Accept: application/json

grant_type=client_credentials

&scope= fundsconfirmations
&client_id=tppclientid

&client_secret=tppclientsecret

 Content-Length: 1103

Content-Type: application/json

Date: Mon, 26 Jun 2017 15:18:28 GMT

{

 "access_token":

"2YotnFZFEjr1zCsicMWpAA",

 "expires_in": 3600,

 "token_type": "bearer",

 "scope":"fundsconfirmations"

}

2. CBPII uses the Access Token (with fundsconfirmations scope) from CBS to invoke the Funds Confirmation

API. This example is sourced directly from the Funds Confirmation API Specification

Request: Funds Confirmation API Response: Funds Confirmation API

POST /funds-confirmation-consents HTTP/1.1

Content-Type: application/json

Authorization: Bearer

2YotnFZFEjr1zCsicMWpAA

Accept: application/json; charset=utf-8

x-fapi-financial-id: I4mth3R3-4p3r-411t-

hing-5withh33dfu1

x-fapi-customer-last-logged-time: Mon, 13

Nov 2017 19:49:37 GMT

x-fapi-customer-ip-address: 92.11.92.11

x-fapi-interaction-id: hook5i13-ntIg-4th3-

rP41-3ro535touch3

client_id:tppclientid

{

 "Data": {

 "DebtorAccount": {

 "SchemeName": "AccountNumberSortCode

",

 "Identification": "01234512345678”},

 "ExpirationDateTime": "2017-05-

02T00:00:00+00:00"

 }

}

 HTTP/1.1 201 Created

Content-Type: application/json

x-fapi-interaction-id: hook5i13-ntIg-4th3-

rP41-3ro535touch3

{

 "Data": {

 "ConsentId": "123456",

 "CreationDateTime": "2017-05-

02T00:00:00+00:00",

 "Status": "AwaitingAuthorisation",

 "StatusUpdateDateTime": "2017-05-

02T00:00:00+00:00",

 "ExpirationDateTime": "2017-05-

02T00:00:00+00:00",

 "DebtorAccount": {

 "SchemeName": "

AccountNumberSortCode",

 "Identification": "01234512345678”}

 },

 "Links": {

 "Self": "/open-banking/v2.0/funds-

confirmation-consents/88379"

 },

 "Meta": {}

}

Step 3 – Agree Funds Confirmation Consent

2. CBPII receives a ConsentId from CBS. The CBPII then creates an Authorization request (using a signed JWT

Request containing the ConsentId as a claim) for the PSU to consent to the Funds Confirmation request directly

with CBS. The request is an OIDC Hybrid flow (requesting for Code and id_token)

Request: OIDC Hybrid Flow Response: OIDC Hybrid Flow

GET /cbs/authorize?

response_type=code id_token

&state=af0ifjsldkj

&scope=openid fundsconfirmations

&nonce=n-0S6_WzA2Mj

&redirect_uri=https://api.mytpp.com/cb

&request=CJleHAiOjE0OTUxOTk1ODd.....JjVqsD

uushgpwp0E.5leGFtcGxlI

iwianRpIjoiM....JleHAiOjE0.olnx_YKAm2J1rbp

OP8wGhi1BDNHJjVqsDuushgpwp0E

 HTTP/1.1 302 Found

 Location: https://api.mytpp.com/cb#

 code=SplxlOBeZQQYbYS6WxSbIA

 &id_token=eyJ0 ... NiJ9.eyJ1c ...

I6IjIifX0.DeWt4Qu ... ZXso

 &state=af0ifjsldkj

Non-Base64 encoded example of the request

parameter object

{

 "alg": "RS256",

 "kid": "GxlIiwianVqsDuushgjE0OTUxOTk"

}

.

{

 "iss":

"https://resourcema.coventrybuildingsociet

y.co.uk",

 "aud": "s6BhdRkqt3",

 "response_type": "code id_token",

 "client_id": "s6BhdRkqt3",

 "redirect_uri":

"https://api.mytpp.com/cb",

 "scope": "openid fundsconfirmations",

 "state": "af0ifjsldkj",

 "nonce": "n-0S6_WzA2Mj",

 "max_age": 86400,

 "claims":

 {

 "userinfo":

 {

 "openbanking_intent_id": {"value":

"123456", "essential": true}

 },

 "id_token":

 {

 "openbanking_intent_id": {"value":

"123456", "essential": true},

 "acr": {"essential": true,

 "values":

["urn:openbanking:psd2:sca",

"urn:openbanking:psd2:ca"]}}

 }

 }

}

2. The PSU is then redirected to the CBPII. The CBPII will now possess the Authorization Code and ID Token from CBS.

Note at this point, there is no Access Token. The CBPII will now introspect the ID Token and use it as a detached signature

to check:

 The hash of the Authorization Code to prove it hasn't been tampered with during redirect (comparing the hash

value against the c_hash attribute in ID Token)

 The hash of the State to prove it hasn't been tampered with during redirect (comparing the state hash value against

the s_hash attribute in the ID Token)

Example: ID Token

{

 "alg": "RS256",

 "kid": "GxlIiwianVqsDuushgjE0OTUxOTk"

}

.

{

 "iss": "https://

resourcema.coventrybuildingsociety.co.uk

",

 "iat": 1234569795,

 "sub": "urn:alphabank:consentId:

123456",

 "acr": "urn:openbanking:psd2:ca",

 "openbanking_intent_id":

"urn:alphabank:consentId: 123456",

 "aud": "s6BhdRkqt3",

 "nonce": "n-0S6_WzA2Mj",

 "exp": 1311281970,

 "s_hash": "76sa5dd",

 "c_hash": "asd097d"

 }

3. Once the state and code validations have been confirmed as successful by use of the ID token, the CBPII will proceed to

obtain an Access Token from CBS using the Authorization Code they now possess. The Access Token is required by the

CBPII in order to access PSU Funds Confirmation information. The fundsconfirmations scope should already be associated

with the Authorization Code generated in the previous step.

Request: Access Token request using

Authorization Code Grant

 Response: Access Token

POST / mga/sps/oauth/oauth20/token

HTTP/1.1

Host: https://

resourcema.coventrybuildingsociety.co.uk

client_id: tppclientid

Content-Type: application/x-www-form-

urlencoded

Accept: application/json

grant_type=authorization_code

&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https://api.mytpp.com/cb

&scope=openid fundsconfirmations

&client_id=tppclientid

&client_secret=tppclientsecret

 HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

Pragma: no-cache

{

 "access_token": "SlAV32hkKG",

 "token_type": "Bearer",

 "expires_in": 7776000

}

Step 4 – Confirm Funds

1. The CBPII can use the Access Token to create a Funds Confirmation Resource. The following examples are from the

Funds Confirmation API Specification

Where the initial Access Token expires, the CBPII will need to create a new request, CBS have not implemented Refresh

Tokens.

Example request against Funds Confirmations resource

Request: POST /Funds Confirmations API Response: POST / Funds Confirmations API

POST /funds-confirmations HTTP/1.1

client_id:tppclientid

Content-Type: application/json

Authorization: Bearer

1t1satruthun1v3rs4lly

Accept: application/json; charset=utf-8

x-fapi-financial-id: I4mth3R3-4p3r-411t-

hing-5withh33dfu1

x-fapi-interaction-id: hook5i13-ntIg-4th3-

rP41-3ro535touch3

client_id:tppclientid

{

 "Data": {

 "ConsentId": "123456",

 "Reference": "Purchase01",

 "InstructedAmount": {

 "Amount": "20.00",

 "Currency": "GBP"

 }

 }

}

 HTTP/1.1 201 Created

Content-Type: application/json

x-fapi-interaction-id: hook5i13-ntIg-4th3-

rP41-3ro535touch3

{

 "Data": {

 "FundsConfirmationId": "789012",

 "ConsentId": "123456",

 "CreationDateTime": "2017-05-

02T00:00:00+00:00",

 "FundsAvailable": true,

 "Reference": "Purchase01",

 "InstructedAmount": {

 "Amount": "20.00",

 "Currency": "GBP"

 }

 },

 "Links": {

 "Self": "/open-banking/v2.0/funds-

confirmations/789012"

 },

 "Meta": {}

}

Step 5 – Get Funds Confirmation Consent Status

The CBPII can use the Access Token to retrieve Funds Confirmation Consent Resource. The following examples are

from the Funds Confirmation Consents API Specification

Where the initial Access Token expires, the CBPII will need to create a new request, CBS have not implemented Refresh

Tokens.

Example request against Confirm Funds Consent resource

Request: GET /Funds Confirmations API Response: POST / Funds Confirmations API

GET /funds-confirmation-consents/123456

HTTP/1.1

Authorization: Bearer Jhingapulaav

x-fapi-financial-id: OB/2017/001

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

client_id:tppclientid

Accept: application/json

 HTTP/1.1 200 OK

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d

Content-Type: application/json

{

 "Data": {

 "ConsentId": "123456",

 "CreationDateTime": "2017-05-

02T00:00:00+00:00",

 "Status": "AwaitingAuthorisation",

 "StatusUpdateDateTime": "2017-05-

02T00:00:00+00:00",

 "ExpirationDateTime": "2017-05-

02T00:00:00+00:00",

 "DebtorAccount": {

 "SchemeName": "UK.OBIE.IBAN",

 "Identification": "GB76LOYD309493012

73801",

 "SecondaryIdentification": "Roll

56988"

 }

 },

 "Links": {

 "Self": "/open-banking/v2.0/funds-

confirmation-consents/123456"

 },

 "Meta": {}

}

Edge Cases

This section provides further information on potential edge cases that may arise via the implementation of Accounts and

Payments API Specifications.

PSU Consent Authorization Interrupt with CBS

API Scenario Workflow Step Impact

Payments Due to an
interruption, the PSU
does not complete
the Authorization of
the Payment with
CBS when redirected
by the PISP (after
creating a PaymentId)

Step 3: Authorize
Consent

Payment Status remains as
Pending or
AcceptedTechnicalValidation

The PISP may
choose to implement
a separate follow up
process which
reminds the PSU to
complete their
Authorization
consent steps with
CBS.

Accounts Due to an
interruption, the PSU
does not complete
the Authorization of
the Accounts request
with CBS when
redirected by the
AISP (after creating
an
AccountRequestId)

Step 3: Authorize
Consent

Account Status remains as
AwaitingAuthorisation

The AISP may
choose to implement
a separate follow up
process which
reminds the PSU to
complete their
Authorization
consent steps with
CBS

