Coventry Building Society

Security Profile v3.0

Confidential

Contents

CoVENTIY BUIAING SOCIELY ...ttt a et s ettt e s s bttt oo a b bt e e e s b et e e e a b et e e e abee e e e anbeeeeennnee 0
LYol 1V o (e 1= YA O PP PP OTPPP 0
AV Z=T = (o] Wt] o1 (o] P PSP P PP TPPP 2
REIEASE INOLE.....cce ettt ettt oo oa bt e e e oa b et e e o oa b et e e o ekttt e e o b b et e e o b bt e e e e b be e e e abbe e e e anbe e e e abaeeeeaa 2
L@ V=T Yo PSPPSRI 2
F U g LT a1 (o1 (L] o T PRSP PPROTPPP 4
LS8 o == T =T 4
L0 [1=Y o) G 1Y o 1= RO PPRPPR 4
LT =T o N Y/ oY= RSO PPRPR 4
OIDC Hybrid Flow (response_type=code id tOKEN)........ccciiiiiiiiiiiiiie et e e e e e e e e et e e e e e e e e snrareeeeeas 4
Client Credentials Grant Type using multiple scopes (scope=accounts PaymMeNts)ccccceeecvrieieieeeiiiiiiiieeeeeeee e 4
1 e =T o TSP T SRR PPN 5
Access Tokens issued through Client Credentials Grantccccouiiiiiii oo e e e e e e e eanreaee s 6
Access Tokens issued through Authorization Code Grantcccuuiiiiii i e e e e e e aee s 6
F U aTe] gp= 11 1] g I @7 oo [= T P PRSP PP PP 6
Success Flows - Payment APl SPeCIfiCatioNoouiiiiiiiii e 7
Payment Initiation with Client Credentials Grant Type and OIDC Hybrid FIOW..........ccoccoiiiiiiiiiee e, 7
Client Credentials Grant Type (OAULN 2.0) ...t e st e s e e e e s e b e e e e abbe e e e eanee 8

L@ | L@ o 1Y o 5 o I 1o USSR 8
Non-Normative HTTP Request and ReSpONSE EXAMPIESooiiiiiiiiiiieie ettt e e e e e e e e e e e 8
Success Flows - Account APl SPeCifiCation...... ... et e e e e e e e e e e eeaaae s 16
Account and Transaction Information with Client Credentials Grant Type and OIDC Hybrid FIOWcccccvveeeeeennn. 16
Client Credentials Grant Type (OAUL 2.0)oooiiiiiiieiie et e e e e e e e e e s e s e e e e e e s sa st areeeeeeeesannnrnneees 17
(O[T O o 1Y o]y o o 1 PSPPSRI 17
Non-Normative HTTP Request and Response EXamPIESscccooeeiiiiiiiii i 17
Success Flows — Funds Confirmation APl SpecCifiCationuiiiiiiiiii e e 24
Funds Confirmation with Client Credentials Grant Type and OIDC Hybrid FIOW.............cccoiiiiiiiiii e, 24
Client Credentials Grant Type (OAULh 2.0)oooi it e e e e e e e s e st e e e e e e s se st abeeeeeeeessnnnsnneees 25

L@ 1| IO o 1Y o]y o o 1 PSSPV 25
Non-Normative HTTP Request and ReSpONSe EXAMPIESooiiiii it e e eeeae s 25
=T [o O F] = TSP PRP 32

PSU Consent Authorization Interrupt with CBS ... e e e e e ee e e 32

Version control

Version Date Updated by Changes made
1.0 07 Feb 2018 Coventry Building Society Baseline version
2.0 20 Feb 2019 Coventry Building Society Update to include new Funds

Confirmation APls and future
support of OBWAC and elDAS
QWAC certificates

3.0 03 Mar 2020 Coventry Building Society Update to include support of
OBWAC and eIDAS QWAC
certificates
Update examples to include client
id passed in request

Release Note

This release note explains what's new in The CBS Security Profile between versions.

Version 3.0 — As per the RTS, TPPs with elDAS certificates must be allowed access to CBS APIs without requiring a
further certificate. On that basis CBS has decided to only accept eIDAS QWAC or OB WAC certificates from June 2020

There will be a 3 month period before the above deadline where a TPP with an existing CBS certificate will be able to use
either their CBS, OpenBanking or eIDAS certificate. To allow this CBS will be communicating with existing on-boarded
TPPs the information required to allow dual access.

CBS provided certificates will be revoked and only eI DAS QWAC or OB WAC certificates accepted from June 2020.

The migration process to eIDAS or OB WAC certificates will be communicated to TPPs who have already on-boarded with
CBS to facilitate a smooth transition.

As part of this change the client_id provided to a TPP when they on-board with CBS must be sent in every request.

Overview

This specification describes the authentication and authorisation given to Third Party Providers (TPPs) to receive
payments, obtain funds confirmation or access account information from Coventry Building Society (CBS) accounts by our
customers.

The API endpoints described here allow an AISP to:
e Create and retrieve TPP payment authorisations

e Create, retrieve and revoke TPP account access authorisations
e Create, retrieve and revoke TPP confirmation of funds authorisations

CBS has adopted the same standards as have been implemented by Open Banking. These can be found here:
https://www.openbanking.org.uk/standards/

https://www.openbanking.org.uk/standards/

Authentication

Consent leverages the OAuth 2.0 authorization framework, allowing customers of CBS to log into applications to grant
authorisation to access their account data or to initiate payments from their accounts without exposing their credentials to
the TPP.

In addition to OAuth 2.0, OpenID Connect identity layer has been used to pass the AccountRequestld, Paymentld and
Consentld (created by the TPP when registering an intent to access data) within the Hybrid Flow, allowing CBS to link the
intent created by the TPP to the customer who will authenticate and authorize the intent.

Request Header

Every request must include a header field called client_id with the value set to the clientld provided by CBS

POST https://resourcema.coventrybuildingsociety.co.uk/mga/sps/oauth/oauth20/token HTTP/1.1

client_id: {clientld value}

Client Types

As per OAuth2 specification, the Confidential Client Type has been implemented. Access to CBS API's is based on TPPs
authenticating securely with our Authorization Server. TPP’s must maintain the confidentiality of the client credentials
which CBS will provide once a TPP successfully on-boards with CBS.

All communication between the TPP and CBS is over TLS 1.2 MA using eIDAS QWAC or OB WAC PSD2 certificates.
Grant Types

OIDC Hybrid Flow (response_type=code id_token)

Both the Payments, Funds Confirmation and Accounts APIs illustrate the use of request_type=code id_token for the OIDC
Hybrid Flow implementation.

Client Credentials Grant Type using multiple scopes (scope=accounts payments)

e The Client Credentials Grant Type is used across both Payments, Funds Confirmation and Account APIs only
when the TPP (AISP/PISP/CBPII) requires an Access Token (on behalf of itself) in order to access a Payment,
Funds Confirmation or Accounts API resource e.g.

o Payments:

POST /payments

GET /payment-submissions/{PaymentSubmissionid}

o Accounts:

POST /account-requests

o Funds Confirmation:

POST /funds-confirmation-consents

e A TPP may therefore choose to request for either a single scope e.g. accounts or for multiple scope(s) e.g.
accounts payments as the TPP may want to use the same Access Token across both APIs.

e Only valid API scopes will be accepted when generating an Access Token (accounts payments
fundsconfirmations).

e Access tokens generated by a Client Credentials grant may not return any refresh tokens (as per the OAuth 2.0
specification)
e Access tokens generated by a Client Credentials grant will expire after 3600 seconds.

Example — Client Credentials:

https://resourcema.coventrybuildingsociety.co.uk/mga/sps/oauth/oauth20/token

Request must include:

grant_type="Client Credentials”
scope="openld accounts”
client_id={clientld provided by CBS when TPP on-boarded}

client_secret={client secret provided by CBS when TPP on-boarded}

ID Token

e |D Tokens must be validated by the TPP (AISP/PISP/CBPII) as outlined within the OIDC Errata 1 Specification

e TPPs must use the openbanking_intent_id claim to populate and retrieve the IntentlD (PaymentID for Payments
API and AccountRequestld for the Accounts API) for any required validation.

e The full set of claims that can be represented within an ID Token are documented in the Request Object and ID
Token Section of the Security Profile.

e ID Token claims (exp and iaf) determine its validity.

e Returned with the Authorization Code when the Hybrid flow (code id_token) is initiated.

https://resourcema.coventrybuildingsociety.co.uk/mga/sps/oauth/oauth20/token
http://openid.net/specs/openid-connect-core-1_0.html#HybridAuthResponseValidation

Access Tokens issued through Client Credentials Grant

Only valid API scopes will be accepted when generating an Access Token (accounts payments
fundsconfirmations).

Access tokens generated by a Client Credentials grant may not return any refresh tokens (as per the OAuth 2.0
specification)

Access tokens generated by a Client Credentials grant for will expire after 3600 seconds (1 hour).

Access Tokens issued through Authorization Code Grant

For the Payments and Accounts APls, the Access Token must be obtained within a Secure, Server Side Context
between the TPP (AISP/PISP/CBPII) and CBS.

Access Tokens must be validated by the TPP (AISP/PISP/CBPII) as outlined within the OIDC Errata 1 Specification
The expires_in attribute returned by the Authorization Server when an Access Token is generated determines its
validity.

Our Access Tokens for Payment Initiation are set to expire after 3600 seconds (1 hour)

Our Access Tokens for Account Information and Funds Confirmation are set to expire after 90 days, after which a
new account or funds confirmation request should be initiated. We do not currently support Refresh Tokens.

Authorization Codes

Authorization Codes must be validated by the TPP (AISP/PISP) as outlined within the OIDC Errata 1 Specification

OAuth 2.0 Specification suggests an Authorization Code should be short lived to a maximum of 10 minutes. Any
codes exceeding this limit to be rejected.
CBS authorization codes will expire after 5 minutes.

http://openid.net/specs/openid-connect-core-1_0.html#HybridAuthResponseValidation
http://openid.net/specs/openid-connect-core-1_0.html#HybridAuthResponseValidation
https://tools.ietf.org/html/rfc6749#section-4.1.2

Success Flows - Payment API Specification

Payment Initiation with Client Credentials Grant Type and OIDC Hybrid Flow

23 Perment itaton vt Gert Credenial GrartTyoe 3 O3 Fbrd Fieve

X

FsU FIsF
1
|
|

Establish TLS 1

CBS Autharisation
Server

BS Resourcs Serv

Step 1: Request Payment Initiation

Send payment initistion rquast) |

Step 2: Setup single payment initiation

Estaslish TLS 1.2 MAQ

T
Clent Credentisls Grant

nidlient cedentisls,

HTTP 200 (OK) acosss-foken (sccpe:payments)

O

Establish TLS 1.2 Map

validate dient authentication aedentials, scope()

validate clientl matehes client SSL certy)

PosT

'
token,

HTTP 201 (Crested), Paymentid

validste szoss: token, scope, elientld()

2ais new payment resourcs (Paymentid) assign te dientld

Store Paymentld()

Greste OIDG JWT within
o heve: "id_token" (openbe
Tualue"Paymentld, “esser

essanial” true)
L Tessentisl” el

HTTP 302 (Found]: Location: /autharize, redirect-ui
dlientld, state, nonce, seope=cpenid payments,
response-type=code id_ioken, request=JWT conlaining

entld

clsims pa:
nbs

Step 3: Authorize consent

HTTP GET Jautherizefredireckur, disntld, siste, nanoe, scope=openid payments, response-
typecode id_token, request=JWT request object with Paymentld)

Authenticste snd Authorize (login and consent page)

validate clientld, seape, redirecturi, JWT request centaining Paymentia|

HTTF 302 (Foundy L

Generste authorizstion code, id_token()

code, ig_token)

i |

HTTP GET redirsctur (sutharizstion cadis, ia_token)__ |

Esiablish TLS 1.2 MAD

HTTR FOST ftoken(dlient aradentials, suthorizstion
code, grant_type, redirect_uri)

validste clientld, suthorization code()

Generste acosss token()

Updste Payment Status o

HTTP 200 (OK): seoess token (scope: payments)

Step 4&: Creste payment submission

Establish TLS 1.2 MAD

\
i
!
Retiers Paymentd sares n St 20 ;
I

PosT

|
HTTP 201 (Crested)

Step 5: Get payment submission status

Establish TLS 1.2 MAD

ait

[Use sctive scosss token to refrisve

GET

{scosss token

HTTF 200 (OKK payment-submission response

fInitiate fresh acoess token via dlient ore:

POST fiokenidient ciedenisls,

I
|
|
:

J |
|
|
|

HTTP 200 (0K} acosss token (scape: payments)

cET

(aceess token (scope: payments))

|
HTTP 20010K): paymentsubmissions response
T

o——=

Client Credentials Grant Type (OAuth 2.0)

Summary
This grant type is used by the PISP in Step 2 to setup a single payment with CBS.

1. The client_id must be included within the Request Header

2. The PISP initiates an Authorization request using valid Client Credentials Grant type and scope(s)

3. The CBS Authorization Server validates the Client Authentication request from the PISP and generates an Access
Token response where the request is valid

4. The PISP uses the Access Token to create a new Payment resource against the CBS Resource Server

The CBS Resource server responds with the Paymentld for the resource it has created.

6. The Client Credentials Grant may optionally be used by the PISP in Step 5 to retrieve the status of a Payment or
Payment-Submission where no active Access Token is available.

o

OIDC Hybrid Flow

Summary

e The client_id must be included within the Request Header

e The Hybrid flow is the recommendation from the OB Security Profile and the FAPI Specification for R/IW. The
Hybrid flow prevents IdP mixup attacks as documented by Nat Sakimura - Cut and Paste OAuth 2.0 Attack

e This is initiated at the end of Step 2 by the PISP after the Paymentld is generated by CBS and returned to the
PISP.

e This is used in a redirect across the PSU and CBS in Step 3 in order for the PSU to authorize consent with CBS -
for the PISP to proceed with the Payment.

e This is used across the PISP and CBS in Step 4 by exchanging the Authorization Code for an Access Token in
order to create the Payment-Submission resource.

Non-Normative HTTP Request and Response Examples

Step 1 - Request Payment Initiation
There are no Requests and Responses against the Payments API in this Step for the PSU, PISP and CBS.

Step 2 - Setup Single Payment Initiation
1. PISP obtains an Access Token using a Client Credentials Grant Type. The scope payments must be used. When
an Access Token expires, the PISP will need to re-request for another Access Token using the same request
below.

Request: Client Credentials using Response: Client Credentials

private key jwt

POST /mga/sps/oauth/ocauth20/token
HTTP/1.1

Host: https://
resourcema.coventrybuildingsociety.co.uk

Content-Length: 1103

Content-Type: application/json
Date: Mon, 26 Jun 2017 15:18:28 GMT
{

client id: tppclientid

Content-Type: application/x-www-form-
urlencoded

Accept: application/json

grant type=client credentials
&scope=payments

"access token":
"2YotnFZFEjrlzCsicMWpAA",
"expires_ in": 3600,
"token type": "bearer",
"scope":"payments"

https://tools.ietf.org/html/rfc6749#section-4.4
http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth
https://nat.sakimura.org/2016/01/25/cut-and-pasted-code-attack-in-oauth-2-0-rfc6749/

&client id=tppclientid
&client secret=tppclientsecret

2. PISP uses the Access Token (with payments scope) from CBS to invoke the Payments API.

Request: Payments API

POST /payments HTTP/1.1

Authorization: Bearer
2YotnFZFEjrlzCsicMWpAA
x—idempotency-key: FRESC0.21302.GFX.20
x-fapi-financial-id: OB/2017/001
x-fapi-customer-last-logged-time: 2017-
06-13T11:36:09
x—-fapi-customer-ip-address: 104.25.212.99
x-fapi-interaction-id: 93bac548-d2de-
4546-b106-880a5018460d

X-Client-Id: tppclientid

Content-Type: application/json

Accept: application/json

{
"Data": {
"Initiation": {
"InstructionIdentification":
"ACME412",
"EndToEndIdentification":
"FRESC0.21302.GFX.20",
"InstructedAmount": {
"Amount": "165.88",
"Currency": "GBP"
b
"CreditorAccount": {
"SchemeName" :
"SortCodeAccountNumber",
"Identification":
"08080021325698",
"Name": "ACME Inc",
"Secondaryldentification": "0002"
b
"RemittanceInformation": {
"Reference": "FRESCO-101",
"Unstructured": "Internal ops
code 5120101"
}
}
b
"Risk": {
"PaymentContextCode":
"EcommerceGoods",
"MerchantCategoryCode": "5967",
"MerchantCustomerIdentification":
"053598653254",
"DeliveryAddress": {

Response: Payments API

HTTP/1.1 201 Created
x—fapi-interaction-id: 93bac548-d2de-
4546-b106-880a5018460d

Content-Type: application/json

{
"Data": {
"PaymentId": "612d9%e8e-074b-490b-
bc8a-0df5287a0dbc",
"Status":
"AcceptedTechnicalValidation",
"CreationDateTime": "2017-06-
05T715:15:13+00:00",
"Initiation": {
"InstructionIdentification":
"ACME412",
"EndToEndIdentification":
"FRESCO0.21302.GFX.20",
"InstructedAmount": {
"Amount": "165.88",
"Currency": "GBP"
b
"CreditorAccount": {
"SchemeName" :
"SortCodeAccountNumber",
"Identification":
"08080021325698",
"Name": "ACME Inc",
"SecondaryIdentification": "0002"
b
"RemittanceInformation": {
"Reference": "FRESCO-101",
"Unstructured": "Internal ops
code 5120101"
}
}
by
"Risk": {
"PaymentContextCode™":
"EcommerceGoods",
"MerchantCategoryCode": "5967",
"MerchantCustomerIdentification":
"053598653254",
"DeliveryAddress": {
"AddressLine": [
"Flat 7",
"Acacia Lodge"

"AddressLine": [
"Flat 7",
"Acacia Lodge"
1
"StreetName": "Acacia Avenue",
"BuildingNumber": "27",
"PostCode": "GU31 2zz",
"TownName": "Sparsholt",
"CountySubDivision": [
"Wessex"
1,
"Country": "UK"

1,
"StreetName": "Acacia Avenue",
"BuildingNumber": "27",
"PostCode": "GU31 2zz",
"TownName": "Sparsholt",
"CountySubDivision": [
"Wessex"
1y
"Country": "UK"
}

bo

"Links": {

"Self":
"https://resourcema.coventrybuildingsocie
ty.co.uk/open-
banking/v1.0/payments/58923"

Step 3 - Authorize Consent
1. PISP receives a Paymentld from CBS. The PISP then creates an Authorization request (using a signed JWT
Request containing the PaymentID as a claim) for the PSU to consent to the Payment directly with CBS. The
request is an OIDC Hybrid flow (requesting for Code and id_token). The same redirect URL which was submitted
to CBS when the TPP on-boarded must be used.

Request: OIDC Hybrid Flow Response: OIDC Hybrid Flow

GET /cbs/authorize? HTTP/1.1 302 Found

client id: tppclientid Location: https://api.mytpp.com/cb#
response type=code id token code=Splx10BeZQQYbYS6WxSbIA
&state=af0ifjsldkj &id token=eyJ0 ... NiJ9.eyJlc
&scope=openid payments I6IjIifX0.DeWt4Qu ... ZXso

&nonce=n-056_WzA2Mj &state=af0ifjsldkj
&redirect uri=https://api.mytpp.com/cb
&request=CJleHAiOjEOOTUxOTk10Dd

DuushgpwpOE.51eGFtcGx1TI

iwianRpIjoiM....J1leHAiOjEO.olnx YKAm2Jlrb
pOP8wGhilBDNHJjVgsDuushgpwpOE

Non-Base64 encoded example of the request
parameter object

"alg": "",
"kid": "GxlIiwianVgsDuushgjEOOTUxOTk"

{

"iss": "https://
resourcema.coventrybuildingsociety.co.uk

"
4

"aud": "s6BhdRkgt3",
"response type": "code id token",
"client id": "s6BhdRkqgt3",

"redirect uri":
"https://api.mytpp.com/cb",

"scope": "openid payments accounts",

"state": "afOifjsldkj",

"nonce": "n-0S6_WzA2Mj",

"max age": 86400,

"claims":

{

"userinfo":

{

"openbanking intent id": {"value":
"612d%e8e-074b-490b-bc8a-0df5287a0dbec",
"essential": true}

by
"id token":
{

"openbanking intent id": {"value":
"612d9e8e-074b-490b-bc8a-0df5287a0dbc",
"essential": true},

"acr": {"essential": true,

"values":
["urn:openbanking:psd2:sca",

"urn:openbanking:psd2:ca"]}}}
}
}

2. The PSU is then redirected to the PISP. The PISP will now possess the Authorization Code and ID Token from CBS.
Note at this point, there is no Access Token. The PISP will now introspect the ID Token and use it to check:

e The hash of the Authorization Code to prove it hasn't been tampered with during redirect (comparing the hash
value against the ¢_hash attribute in ID Token)

e The hash of the State to prove it hasn't been tampered with during redirect (comparing the state hash value against
the s_hash attribute in the ID Token)

Example: ID Token

"alg": "RS256",
"kid": "12345",
"typ A . A JWT A

}

{

"iss": "https://
resourcema.coventrybuildingsociety.co.uk

"
4

"iat": 1234569795,
"sub": "urn:alphabank:payment:58923",
"acr": "urn:openbanking:psd2:ca",

"openbanking intent id":
"urn:alphabank:payment: 612d9e8e-074b-
490b-bc8a-0df5287a0dbc",

"aud": "s6BhdRkqgt3",

"nonce": "n-0S6_WzA2Mj",

"exp": 1311281970,

"s hash": "76sabdd",
"c_hash": "asd097d"
}

2. Once the state and code validations have been confirmed as successful by use of the ID token, the PISP will
proceed to obtain an Access Token from CBS using the Authorization Code they now possess. The PISP will
present its Authorization Code together with the private_key jwt. The Access Token is required by the PISP in
order to submit the Payment on behalf of the PSU. The payments scope should already be associated with the
Authorization Code generated in the previous step.

Request: Access Token Request using Response: Access Token
Authorization Code and private key jwt

POST /mga/sps/oauth/oauth20/token
HTTP/1.1
Host: https://
resourcema.coventrybuildingsociety.co.uk
client id: tppclientid
Content-Type: application/x-www-form-
urlencoded
Accept: application/json
grant_ type=authorization code
&code=Splx10BeZQQYbYS6WxSbIA
&redirect uri=https://api.mytpp.com/cb
&client assertion type=
urn%3Aietf%3Aparams%3Acauth%3Aclient-
assertion-type%$3Ajwt-bearer
&client assertion=eyJhbGciOiJSUzI1NiIsInR
5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwW
czovL2p3dClpZHAUZXhhbXBsZS57b20iLCJzdWIi0
1JtYW1lsdG86bWlrZUBleGFtcGx1LmN
vbSIsIm5iZ2iI6MTQ50TE4AMzYWMSwWwiZXhwljoxNDk5
MTg3MjAXLCIPYXQi0jEQOOTkxODM2MD
EsImpO0aSI6ImlkMTIzNDU2IiwidHlwIjoiaHROcCHM
6Ly91eGFtcGx1LmNvbS9yZWdpc3R1lc
1J9.SAxPMaJK w¥Yl W2idTQASjiEZ4UoI7-
P2SbmnHKr6LvP8Z2JZ2X6J1npK xClJswAnilT
plUnHJs1lc08JrexctaeEIBrqwHG18iBcWKjhHK2Tv
5m4nbTsS1i1MFQOIMUTRFg3 LQiHQV2
M8Hf1v9q9YaQqgxDadMKOasDUtE zYMHz8kKDb-7j-
Vh4mVDeM4 FPiffd2C5ckjkrZBNOKO
01Xktm7xTgX6£fk56KTrejeAdx6D 1ygJcGEjZCvoK
nki7J1-6MfwUKb9Z0oZ9LiwHf51LXPuy
_QrOyMOpONWKJj 9K4M] 7I4GPGvzyVapazUgjcOazyY
rlu p9tnS1E781dDLuw

HTTP/1.1 200 OK

Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{

"access token": "S1AV32hkKG",
"token type": "Bearer",
"expires_in": 3600

}

Non-Base64 encoded example of the request
parameter object

"alg": "R5256",
"kid": "12345",
"typ " : " JWT"

"s6BhdRkgt3",
"s6BhdRkgt3",
1499187201,
1499183601,
"idl23456",

"https://resourcema.coventrybuildingsocie
ty.co.uk/mga/sps/ocauth/ocauth20/token "
}

Step 4 - Create Payment-Submission

1. The PISP has an Access Token which can be used to Create a Payment-Submission (Step 4). The PISP must obtain the
Paymentld (Intent-ID) so that the Payment request is associated with the correct Paymentld. This can be sourced from:

1. The Paymentld claim from the ID Token (default). The PISP will need to locate the claim attribute associated with
the Paymentld.

The PISP can now invoke the /payment-submissions endpoint to commit the Payment using the Access Token and
Paymentld in the payload of the request. This example is sourced from the Payment Initiation API Specification

Request: payment-submissions Response: payment-submissions

POST /payment-submissions HTTP/1.1 HTTP/1.1 201 Created
Authorization: Bearer S1AV32hkKG x-fapi-interaction-id: 93bacb548-d2de-
x-idempotency-key: FRESNO.1317.GFX.22 4546-b106-880a5018460d
x-fapi-financial-id: OB/2017/001 Content-Type: application/json
x-fapi-customer-last-logged-time: 2017-
06-13T11:36:09 {
x—-fapi-customer-ip-address: 104.25.212.99 "Data": {
x-fapi-interaction-id: 93bac548-d2de- "PaymentSubmissionId": "58923-001"
4546-b106-880a5018460d "PaymentId": "612d9e8e-074b-490b-
X-Client-Id: tppclientid bc8a-0d£5287a0dbc",
Content-Type: application/Jjson "Status":
Accept: application/json "AcceptedSettlementInProcess",
"CreationDateTime": "2017-06-
{ 05T15:15:22+00:00"
"Data": { },

"PaymentId": "612d9e8e-074b-490b- "Links": {

bc8a-0df5287a0dbc",

"Initiation": {
"InstructionIdentification":
"ACME412",
"EndToEndIdentification":
"FRESC0.21302.GFX.20",
"InstructedAmount": {
"Amount": "165.88",
"Currency": "GBP"
b
"CreditorAccount": {
"SchemeName" :
"SortCodeAccountNumber",
"Identification":
"08080021325698",
"Name": "ACME Inc",
"SecondaryIdentification": "0002"
b
"RemittanceInformation": {
"Reference": "FRESCO-101",
"Unstructured": "Internal ops
code 5120101"

}

}
by
"Risk": {
"PaymentContextCode":
"EcommerceGoods",
"MerchantCategoryCode": "5967",

"MerchantCustomerIdentification":
"053598653254",
"DeliveryAddress": {
"AddressLine": [
"Flat 7",
"Acacia Lodge"
1,
"StreetName": "Acacia Avenue",
"BuildingNumber": "27",
"PostCode": "GU31 2zz",
"TownName": "Sparsholt",
"CountySubDivision": [
"Wessex"
1
"Country": "UK"

"Self": "https://
resourcema.coventrybuildingsociety.co.uk
/open-banking/v1.0/payment-
submissions/58923-001"

b
"Meta": {}

Step 5 - Get Payment-Submission Status

1. The PISP can query for the status of a Payment-Submission by invoking the /payment-submissions using the
known PaymentSubmissionld. This can use an existing access token with payments scope or the PISP can obtain
a fresh access token by replaying the client credentials grant request as per Step 2 - Setup Single Payment
Initiation.

Request: payment- Response: payment-submissions
submissions/{PaymentSubmissionId}

GET /payment-submissions/58923-001
HTTP/1.1

Authorization: Bearer S1AV32hkKG
x-fapi-financial-id: OB/2017/001
x-fapi-customer-last-logged-time: 2017-
06-13T11:36:09
x-fapi-customer-ip-address: 104.25.212.99
x-fapi-interaction-id: 93bac548-d2de-
4546-b106-880a5018460d

X-Client-Id: tppclientid

Accept: application/json

HTTP/1.1 200 OK
x-fapi-interaction-id: 93bac548-d2de-
4546-b106-880a5018460d

Content-Type: application/json

{
"Data": {

"PaymentSubmissionId": "58923-001",

"PaymentId": "612d9e8e-074b-490b-
bc8a-0df5287a0dbc",

"Status":
"AcceptedSettlementInProcess",

"CreationDateTime": "2017-06-
05T15:15:22+00:00"

by
"Links": {

"Self": "https://
resourcema.coventrybuildingsociety.co.uk
/open-banking/v1.0/payment-
submissions/58923-001"

by
"Meta": {}

2. A PISP can also optionally query for the status of a Payment resource by invoking /payments/{Paymentld}. This
can use an existing access token with payments scope or the PISP can obtain a fresh access token by replaying
the client credentials grant request as per Step 2 - Setup Single Payment Initiation.

Success Flows - Account API Specification

Account and Transaction Information with Client Credentials Grant Type and OIDC Hybrid Flow

3 Ao oz i Che rederiats G Type 2t ODC W Fime

GBS Autorsatizn
e
Psu e
I

! Estabiian TS 120 ! | |

st ©
— —
N i ke |
[l Stap - Satup account request
B [T s

validate dient suthentication cedentsls. sosel)

validate dienig matznes dient SSL sert)
HTTP 200 (OK) scosss-otan fscope: scoounts)

Exanian TLS 12 Ay
T

POST /aceountrsquestacness toien, seope:ascsunts)
T

-

i
1 st scoae oken, s clentil)
1
i
! Creats e scnmunt ez (koo Aequeste] ssign o e

HTTR 201 3 equesdd

Stors AcuntRsuesd)
’—‘ﬁ Create GIDC JWT within cairs parameter must rave:
- “ia_token" [cpenbaniing_imtent_ic" Cvalu

St = e e

T
HITP 202 (Foundy Location: fsunanzs, redires
Glentia, szate, noncs, scopa=openid acoouns, responie
ypa=cace id_token. request= T containing
e ——

HTTR GET /authoriasiiesirect-un, dienlld, st nonce. scope=spenid scaounts, rsponse-
coe 19_foken, requesta AT reuest OBject i AcepunReqUE)

'
Aumenucats an o
1

validate clianid, scope. redivecs
Accourtfeauestidl) i

T recuest containing

Ganerain suthceization cods, 1d_token)

urrecer d_toten) 1

Establisn TLS 12 MAD

I, utnerization

HTTR FOST nossnicliont sesert
. Grant_ype. eci

vallaate tienid, autncrizasion cacer)

Ganerste scomss sen)

jaste sccmuns

HTTP 200 (04 scosss token fscope: accounts)

— i *;

Exablan TLS 12 MAD
T

|
Retrievs acoesstosan() !
|

SET /scomuntsimoress-toten seope scmountl
T

i

|
|
|
| comsrtcken mtehes dient S5 est)
|

| valisats sespezanasunts

HITP 200 (0K]: List of mocoutna containing Accountld
(s \:

oer

s Accouriid) yansadtions/acoess token scape acoounts)

—

validate scoesstoken matces dient SSL cert)

! vaiisats scopemaczoun)

|
HTTP 200 (WY List ot wansations

R B Rk T

Initiate Fesh accass fken via diant redentials grant]

|
I
Estanlon TLS 12 MAD

|
POST Nekanielient cedentals scope: secsunts) |

valiaats rient suihenitication wessntials. seseel

vaiiaate dienid matches dlent SSL oert)

HTTP 200 (0K scoesstoken Isanpe: accountsh

Esisbisn TLS 12 MAD

jACC

i
et ; ssenunts)

validate acoesstckent)

i

i

i

i

i

; validete scope sccounts)
i

! iiate dients matches gent SSL owt)
i

] [—
HTTP 20010K; Accourifeaven Sistus

d =) i

Client Credentials Grant Type (OAuth 2.0)

Summary
This grant type is used by the AISP in Step 2 to register an intent for the PSU to allow the AISP to retrieve their Account
information from CBS.

1. The client_id must be included within the Request Header

2. The AISP initiates an Authorization request using valid Client Credentials Grant type and scope(s)

3. The CBS Authorization Server validates the Client Authentication request from the AISP and generates an Access
Token response where the request is valid

4. The AISP uses the Access Token to create a new Account Request resource against the CBS Resource Server

5. The CBS Resource server responds with the AccountRequestld representing the resource it has created.

OIDC Hybrid Flow

Summary

1. The client_id must be included within the Request Header

2. This is initiated at the end of Step 2 by the AISP after the AccountRequestld is generated by CBS and returned to
the AISP.

3. Thisis used in a redirect across the PSU and CBS in Step 3 in order for the PSU to authorize consent with CBS -
for the AISP to proceed with the requesting Account information.

4. This is used across the AISP and CBS in Step 4 by swapping the Authorization Code for an Access Token in order
to retrieve PSU Account information.

Non-Normative HTTP Request and Response Examples

Step 1 - Request Account Information
There are no Requests and Responses against the Accounts and Transactions API in this Step for the PSU, AISP and
CBS.

Step 2 - Setup Account Request
1. AISP obtains an Access Token using a Client Credentials Grant Type. The scope accounts must be used. When
an Access Token expires, the AISP will need to re-request for another Access Token using the same request
below.

Request: Client Credentials using Response: Client Credentials

private key jwt

POST /mga/sps/ocauth/ocauth20/token
HTTP/1.1

Host:
https://resourcema.coventrybuildingsociet
y.co.uk

client id: tppclientid

Content-Length: 1103

Content-Type: application/json
Date: Mon, 26 Jun 2017 15:18:28 GMT
{

"access token":
"2YotnFZFEjrlzCsicMWpAA",
Content-Type: application/x-www-form-
urlencoded
Accept: application/json
grant type=client credentials
&scope=accounts
&client id=tppclientid
&client secret=tppclientsecret

"expires_ in": 3600,
"token type": "bearer",
"scope":"accounts"

2. AISP uses the Access Token (with accounts scope) from CBS to invoke the Accounts API. This example is

sourced directly from the Account and Transactions API Specification

Request: Accounts API

POST /account-requests HTTP/1.1
Authorization: Bearer
2YotnFZFEjrlzCsicMWpAA
x-fapi-financial-id: OB/2017/001
x—-fapi-customer-last-logged-time: 2017-
06-13T11:36:09

x-fapi-customer-ip-address: 104.25.212.99

x-fapi-interaction-id: 93bac548-d2de-
4546-b106-880a5018460d

X-Client-Id: tppclientid
Content-Type: application/json
Accept: application/json

{
"Data": {

"Permissions": [
"ReadAccountsDetail",
"ReadBalances",
"ReadBeneficiariesDetail",
"ReadDirectDebits",
"ReadProducts",
"ReadStandingOrdersDetail",
"ReadTransactionsCredits",
"ReadTransactionsDebits",
"ReadTransactionsDetail"

1

"ExpirationDateTime": "2017-05-

02T00:00:004+00:00",

"TransactionFromDateTime": "2017-05-

03T00:00:00+00:00",

"TransactionToDateTime": "2017-12-

03T00:00:00+00:00"
b
"Risk": {}

Step 3 - Authorize Consent

Response: Accounts APT

HTTP/1.1 201 Created
x-fapi-interaction-id: 93bac548-d2de-
4546-b106-880a5018460d

Content-Type: application/json

{
"Data": {

"AccountRequestId": "612d9%e8e-074b-

490b-bc8a-0df5287a0dbc",

"Status": "AwaitingAuthorisation",

"CreationDateTime": "2017-05-

02T00:00:004+00:00",

"Permissions": [
"ReadAccountsDetail",
"ReadBalances",
"ReadBeneficiariesDetail",
"ReadDirectDebits",
"ReadProducts",
"ReadStandingOrdersDetail",
"ReadTransactionsCredits",
"ReadTransactionsDebits",
"ReadTransactionsDetail"

1,

"ExpirationDateTime": "2017-08-

02T00:00:00+00:00",

"TransactionFromDateTime": "2017-05-

03T00:00:004+00:00",

"TransactionToDateTime": "2017-12-

03T00:00:00+00:00"
by
"Risk": {},
"Links": {
"Self": "/account-requests/612d9%e8e-
074b-490b-bc8a-0df5287a0dbc"
by
"Meta": {
"TotalPages": 1

1. AISP receives a AccountRequestld from CBS. The AISP then creates an Authorization request (using a signed
JWT Request containing the AccountRequestld as a claim) for the PSU to consent to the Account request directly
with CBS. The request is an OIDC Hybrid flow (requesting for Code and id_token)

Request: OIDC Hybrid Flow Response: OIDC Hybrid Flow

GET /cbs/authorize? HTTP/1.1 302 Found

response_type=code id token Location: https://api.mytpp.com/cb#
&client id=s6BhdRkgt3 code=Splx10BeZQQYbYS6WXSHIA
&state=af0ifjsldkj &id token=eyJ0 ... NiJ9.eyJlc
&scope=openid accounts I6IjIifX0.DeWtd4Qu ... ZXso

&nonce=n-056_WzA2Mj &state=af0ifjsldkj
&redirect uri=https://api.mytpp.com/cb
&request=CJleHAiOjEOOTUxOTk10Dd

DuushgpwpOE.51eGFtcGx1TI

iwianRpIjoiM....JleHAiOjEO.olnx YKAm2J1lrb
pOP8wGhilBDNHJjVgsDuushgpwpOE

Non-Base64 encoded example of the request
parameter object

"alg": "RS256",
"kid": "GxlIiwianVgsDuushgjEOOTUxOTk"

{

"iss":
"https://resourcema.coventrybuildingsocie
ty.co.uk",

"aud": "s6BhdRkgt3",

"response type": "code id_ token",

"client id": "s6BhdRkgt3",

"redirect uri":
"https://api.mytpp.com/cb",

"scope": "openid accounts",

"state": "afOifjsldkj",

"nonce": "n-0S6_WzA2Mj",

"max age": 86400,

"claims":

{
"userinfo":
{

"openbanking intent id": {"value":
"612d9e8e-074b-490b-bc8a-0df5287a0dbc",
"essential": true}

by
"id token":
{

"openbanking intent id": {"value":
"612d9e8e-074b-490b-bc8a-0d£f5287a0dbc",
"essential": true},

"acr": {"essential": true,

"values":
["urn:openbanking:psd2:sca",

"urn:openbanking:psd2:ca"]}}

}

}

2. The PSU is then redirected to the AISP. The AISP will now possess the Authorization Code and ID Token from CBS.
Note at this point, there is no Access Token. The AISP will now introspect the ID Token and use it as a detached signature
to check:

e The hash of the Authorization Code to prove it hasn't been tampered with during redirect (comparing the hash
value against the ¢_hash attribute in ID Token)

e The hash of the State to prove it hasn't been tampered with during redirect (comparing the state hash value against
the s_hash attribute in the ID Token)

Example: ID Token

"alg": "R5256",
"kid": "GxlIiwianVgsDuushgjEOOTUxOTk"

{

"iss": "https://
resourcema.coventrybuildingsociety.co.uk

"
4

"iat": 1234569795,

"sub":
"urn:alphabank:accountRequestId:88379",
"acr": "urn:openbanking:psd2:ca",

"openbanking intent id":
"urn:alphabank:accountRequestId:612d%e8e-
074b-490b-bc8a-0df5287a0dbc",

"aud": "s6BhdRkgt3",

"nonce": "n-0S6_WzA2Mj",

"exp": 1311281970,

"s hash": "76sab5dd",

"c_hash": "asd097d"

3. Once the state and code validations have been confirmed as successful by use of the ID token, the AISP will proceed to
obtain an Access Token from CBS using the Authorization Code they now possess. The AISP will present its Authorization
Code together with the private_key_jwt. The Access Token is required by the AISP in order to access PSU Account

information. The accounts scope should already be associated with the Authorization Code generated in the previous step.

Request: Access Token request using Response: Access Token
Authorization Code and private key jwt

POST /mga/sps/ocauth/ocauth20/token
HTTP/1.1

Host: https://
resourcema.coventrybuildingsociety.co.uk

HTTP/1.1 200 OK

Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

client id: tppclientid

Content-Type: application/x-www-form-
urlencoded

Accept: application/json

{
"access token": "S1AV32hkKG",
"token type": "Bearer",

grant_ type=authorization code
&code=Splx10BeZQQYbYSO6WxSbHIA
&redirect uri=https://api.mytpp.com/cb
&client assertion type=
urn$3Aietf%3Aparams%$3Acauth%$3Aclient-
assertion-type%$3Ajwt-bearer
&client assertion=eyJhbGciOiJSUzI1NiIsInR
5cCI6IkpXVCJ%.eyJpc3MiOiJodHRwW
czovL2p3dClpZHAUZXhhbXBsZS57b20iLCJzdWIi0
1JtYW1sdG86bWlrZUBleGFtcGx1LmN
vbSIsIm5iZ2iI6MTQ50TE4AMzYWMSwiZXhwljoxNDk5
MTg3MjAxXLCIpYXQiOjEOOTkxODM2MD
EsImpO0aSI6ImlkMTIzNDU2IiwidHlwIjoiaHROcHM
6Ly91eGFtcGx1LmNvbS9yZWdpc3Rlc
iJ9.SAXPMaJK_le_WZidTQASjiEZ4UoI7—
P2SbmnHKr6LvP8Z2JZ2X6J1npK xClJswAnilT
plUnHJs1lc08JrexctaeEIBrgwHG18iBcWKjhHK2Tv
5m4nbTsS1i1MFQOIMUTRFg3 LQiHQV2
M8Hf1v9q9YaQqgxDadMK0asDUtE zYMHz8kKDb-7j-
Vh4mvVDeM4 FPiffd2C5ck]jkrZBNOKO
01Xktm7xTgX6£fk56KTrejeAdx6D 1ygJcGEjZCvoK
nki7J1-6MfwUKb9ZoZ9LiwHf51LXPuy
_QrOyMOpONWKJj 9K4M] 7I4GPGvzyVapazUgjcOazyY
rlu p9tnS1E781dDLuw

"expires_in": 7776000
}

Non-Base64 encoded example of the request
parameter object

"RS256",
"12345",
" JWT nw

"iss": "s6BhdRkgt3",

"sub": "s6BhdRkqgt3",

"exp": 1499187201,

"iat": 1499183601,

"Jti": "idl123456",

"aud": "https://
resourcema.coventrybuildingsociety.co.uk
/as/token.ocauth2"

}

Step 4 - Request Account Data
1. The AISP can use the Access Token to retrieve Accounts (bulk or specific). The following examples are from the
Account and Transaction API Specification

Where the initial Access Token expires, the AISP can use the Refresh token in order to obtain a fresh Access Token.

Example request against Accounts resource

Request: GET /Accounts API Response: GET /Accounts API

GET /accounts HTTP/1.1 HTTP/1.1 200 OK
Authorization: Bearer S1AV32hkKG x-fapi-interaction-id: 93bac548-d2de-
x-fapi-financial-id: OB/2017/001 4546-b106-880a5018460d
x-fapi-customer-last-logged-time: 2017- Content-Type: application/Jjson
06-13T11:36:09
x-fapi-customer-ip-address: 104.25.212.99 {
x-fapi-interaction-id: 93bac548-d2de- "Data": {
4546-b106-880a5018460d "Account": [
X-Client-Id: tppclientid {
Accept: application/json "AccountId": "22289",
"Currency": "GBP",
"Nickname": "Bills",
"Account": {
"SchemeName" :
"SortCodeAccountNumber",
"Identification":
"80200110203345",
"Name": "Mr Kevin",
"SecondaryIdentification":
"00021"
}
]
by
"Links": {
"Self": "/accounts/"
s
"Meta": {
"TotalPages": 1

Example request for a specific Account Id

Request: GET /Accounts/22289 API Response: GET /Accounts/22289 API

GET /accounts/22289 HTTP/1.1 HTTP/1.1 200 OK
Authorization: Bearer S1AV32hkKG x-fapi-interaction-id: 93bac548-d2de-
x-fapi-financial-id: OB/2017/001 4546-b106-880a5018460d
x-fapi-customer-last-logged-time: 2017- Content-Type: application/json
06-13T11:36:09
x—-fapi-customer-ip-address: 104.25.212.99 {
x-fapi-interaction-id: 93bac548-d2de- "Data": {
4546-b106-880a5018460d "Account": [
X-Client-Id: tppclientid {
Accept: application/json "AccountId": "22289",
"Currency": "GBP",
"Nickname": "Bills",
"Account": {
"SchemeName" :
"SortCodeAccountNumber",
"Identification":
"80200110203345™",

"Name": "Mr Kevin",
"SecondaryIdentification":

"ooo21"

by
"Links": {
"Self": "/accounts/22289"
b
"Meta": {
"TotalPages": 1

Success Flows — Funds Confirmation API Specification

Funds Confirmation with Client Credentials Grant Type and OIDC Hybrid Flow

sd ConfirmationFunds

% i

P

St
I
I
|
I
|

u CBFIl

CBS Resource
Server

Onboard with CBPII and consent to Canfirmation of Funds{)

|
|
|
|
|
Step 1: Request confirmation uifurdi‘;
!
|
|
|
|
|

Step 2: Setup Confirmation of Funds. Req‘uess

s Flow

il

POST El dentisls, scope:

acoess-toker

velidste client authentication oredentisls, scopef

funds-confimation-censent with Statu:

ingAuthorisation. Include access-token retrieved in zbove step ﬁ

POST ffunds-confirmetion-consents(}
T

HTTF 201 (Created), Consentid

]
|
i
Create OIDC JWT within claims parameter must have: “id_token™
'openbanking_intent_id": {*value™:Consentld, “essentisl
true} "™ "essentisl true}

Consent Status: AwaitingAuthorisstion|

Step 3: Agree Funds Confirmation Consent

Redirection using Authoriz:

jan Code Grant ﬁ

HTTP 302 (Found) Redirect: Location: /authorize, redirect-
uri, clientld, state, nonce, scope=openid sccounts,
response-type=code id_token, request=IWT contsining
Cenzentld

pecents oy S e e e e e e e - L

Follow redirect{Consentid)

Authenticate and SCA[)
Updste funds-confirmation status to Authorised(}
Generate suthorization ode, id_token() |
i HTTP 202 (Found|: Locstion:redirect-uri(suthorization code, id_token) !
i
Follow code, id_token) } }
] | |
TJ i i
: Exchange sutharization-code for scoess token| } }
| - |
! i
| |
! - |
| g i
: i i
| 1 1
| Step 4: Confirm Funds i |
1 ; ;
! | |
! i i
! POST /funds-canfis) !
! i
! i
! |
| | validste fund: agsinst funds-
! |
! i
! | Establish if funds sre svailsble()
I
I HTTP 201 [Created): FundsConfirmationld, FundsAvailable (Yes/No)
| I T
! |
i
L 1 1
I Step 6: Get Funds Confirmation Consent Status. |
I ' ;
! i i
! | |
l ' i
1 GET ffunds- ents/{f ad
I 7 -
! I
i - HTTP 200 (OK] fund i resource
| -
1
|
i

nsent(}

Client Credentials Grant Type (OAuth 2.0)

Summary
This grant type is used by the CBPII in Step 2 to register an intent for the PSU to allow the CBPII to retrieve their Funds
Confirmation information from CBS.

1. The client_id must be included within the Request Header

2. The CBPIl initiates an Authorization request using valid Client Credentials Grant type and scope(s)

3. The CBS Authorization Server validates the Client Authentication request from the CBPIl and generates an Access
Token response where the request is valid

4. The CBPII uses the Access Token to create a new Funds Confirmation Consent Request resource against the
CBS Resource Server

5. The CBS Resource server responds with the Consentld representing the resource it has created.

OIDC Hybrid Flow

Summary

1. The client_id must be included within the Request Header

2. This is initiated at the end of Step 2 by the CBPII after the Consentld is generated by CBS and returned to the
CBPIL.

3. This is used in a redirect across the PSU and CBS in Step 3 in order for the PSU to authorize consent with CBS -
for the CBPII to proceed with the requesting Funds Confirmation information.

4. This is used across the CBPIl and CBS in Step 4 by swapping the Authorization Code for an Access Token in order
to retrieve PSU Funds Confirmation information.

Non-Normative HTTP Request and Response Examples

Step 1 - Request Funds Confirmation
There are no Requests and Responses against the Funds Confirmation API in this Step for the PSU, CBPIl and CBS.

Step 2 - Setup Funds Confirmation Request
1. CBPII obtains an Access Token using a Client Credentials Grant Type. The scope fundsconfirmations must be
used. When an Access Token expires, the CBPII will need to re-request for another Access Token using the same
request below.

Request: Client Credentials Response: Client Credentials

POST /mga/sps/ocauth/ocauth20/token
HTTP/1.1

Content-Length: 1103
Content-Type: application/json

Host: Date: Mon, 26 Jun 2017 15:18:28 GMT

https://resourcema.coventrybuildingsociet
y.co.uk

client id: tppclientid

Content-Type: application/x-www-form-

urlencoded

Accept: application/json

grant type=client credentials
&scope= fundsconfirmations
&client id=tppclientid

&client secret=tppclientsecret

{
"access token":
"2YotnFZFEjrlzCsicMWpAA",
"expires in": 3600,
"token type": "bearer",
"scope":"fundsconfirmations"

2. CBPIl uses the Access Token (with fundsconfirmations scope) from CBS to invoke the Funds Confirmation
API. This example is sourced directly from the Funds Confirmation API Specification

Request: Funds Confirmation API

POST /funds-confirmation-consents
HTTP/1.1

Content-Type: application/json
Authorization: Bearer
2YotnFZFEjrlzCsicMWpAA

Accept: application/json; charset=utf-8
x—fapi-financial-id: I4mth3R3-4p3r-411t-
hing-5withh33dful
x-fapi-customer-last-logged-time: Mon, 13
Nov 2017 19:49:37 GMT
x-fapi-customer-ip-address: 92.11.92.11
x—fapi-interaction-id: hook5il3-ntIg-
4th3-rP41-3ro535touch3
X-Client-Id:tppclientid

"Data": {
"DebtorAccount": {
"SchemeName": "UK.OBIE.IBAN",
"Identification": "GB76L0OYD30949301
273801
b
"ExpirationDateTime": "2017-05-
02T00:00:00+00:00"
}

Step 3 — Agree Funds Confirmation Consent

Response: Funds Confirmation API

HTTP/1.1 201 Created

Content-Type: application/json
x—fapi-interaction-id: hook5il3-ntIg-
4th3-rP41-3ro535touch3

"Data": {
"ConsentId": "123456",
"CreationDateTime": "2017-05-
02T00:00:004+00:00",
"Status": "AwaitingAuthorisation",

"StatusUpdateDateTime": "2017-05-
02T00:00:00+00:00",

"ExpirationDateTime": "2017-05-
02T00:00:00+00:00",

"DebtorAccount": {
"SchemeName": "UK.OBIE.IBAN",
"Identification": "GB76L0OYD30949301
273801
}
by
"Links": {

"Self": "https://
resourcema.coventrybuildingsociety.co.uk
/open-banking/v2.0/funds-confirmation-
consents/88379"

2. CBPIl receives a Consentld from CBS. The CBPII then creates an Authorization request (using a signed JWT
Request containing the Consentld as a claim) for the PSU to consent to the Funds Confirmation request directly
with CBS. The request is an OIDC Hybrid flow (requesting for Code and id_token)

Request: OIDC Hybrid Flow

GET /cbs/authorize?

response type=code id token
&state=af0ifjsldkj

&scope=openid fundsconfirmations

&nonce=n-056_WzA2Mj
&redirect uri=https://api.mytpp.com/cb
&request=CJleHAiOjEOOTUxOTk10Dd

Response: OIDC Hybrid Flow

HTTP/1.1 302 Found
Location: https://api.mytpp.com/cb#
code=Splx10BeZQQYbYSO6WxSbLIA
&id token=eyJo0 NiJ9.eyJlc
I6I3I1ifX0.DeWt4Qu ... ZXso
&state=af0ifjsldkj

DuushgpwpOE.51eGFtcGx1TI

iwianRpIjoiM....JleHAiOjEO.olnx YKAm2J1lrb

pPOP8wGhilBDNHJjVgsDuushgpwpOE

Non-Base64 encoded example of the request
parameter object

"alg": "RS256",
"kid": "GxlIiwianVgsDuushgjEOOTUxOTk"

{
"iss":
"https://resourcema.coventrybuildingsocie
ty.co.uk",
"aud": "s6BhdRkgt3",
"response type": "code id token",
"client id": "s6BhdRkgt3",
"redirect uri":
"https://api.mytpp.com/cb",
"scope": "openid fundsconfirmations",
"state": "afOifjsldkj",
"nonce": "n-0S6 WzA2Mj",
"max age": 86400,
"claims":
{
"userinfo":
{
"openbanking intent id": {"value":
"123456", "essential": true}
by
"id token":
{
"openbanking intent id": {"value":
"123456", "essential": true},
"acr": {"essential": true,
"values":
["urn:openbanking:psd2:sca",

"urn:openbanking:psd2:ca"]}}
}
}

2. The PSU is then redirected to the CBPIIl. The CBPII will now possess the Authorization Code and ID Token from CBS.
Note at this point, there is no Access Token. The CBPII will now introspect the ID Token and use it as a detached signature
to check:

e The hash of the Authorization Code to prove it hasn't been tampered with during redirect (comparing the hash
value against the ¢_hash attribute in ID Token)

e The hash of the State to prove it hasn't been tampered with during redirect (comparing the state hash value against
the s_hash attribute in the ID Token)

Example: ID Token

"alg": "R8256",
"kid": "GxlIiwianVgsDuushgjEOOTUxOTk"

{

"iss": "https://
resourcema.coventrybuildingsociety.co.uk

"
4

"iat": 1234569795,

"sub": "urn:alphabank:consentId:
123456",

"acr": "urn:openbanking:psd2:ca",

"openbanking intent id":
"urn:alphabank:consentId: 123456",

"aud": "s6BhdRkgt3",

"nonce": "n-0S6_WzA2Mj",

"exp": 1311281970,

"s hash": "76sab5dd",

"c _hash": "asd097d4d"

3. Once the state and code validations have been confirmed as successful by use of the ID token, the CBPII will proceed to
obtain an Access Token from CBS using the Authorization Code they now possess. The CBPII will present its Authorization
Code together with the private_key jwt. The Access Token is required by the CBPII in order to access PSU Funds
Confirmation information. The fundsconfirmations scope should already be associated with the Authorization Code

generated in the previous step.

Request: Access Token request using
Authorization Code and private key jwt

POST

https://resourcema.coventrybuildingsociet

y.co.uk/mga/sps/oauth/ocauth20/token

HTTP/1.1

Host: https://

resourcema.coventrybuildingsociety.co.uk

client id: tppclientid

Content-Type: application/x-www-form-

urlencoded

Accept: application/json

grant_ type=authorization code

&code=Splx10BeZQQYbYS6WxSbLIA

&redirect uri=https://api.mytpp.com/cb

&client assertion type=
urn%$3Aietf%3Aparams%$3Acauth%3Aclient-

assertion-type%$3Ajwt-bearer

&client assertion=eyJhbGciOiJSUzI1NiIsInR

5cCI6IkpXVCJ%.eyJpc3MiOiJodHRwW

czovL2p3dClpZHAUZXhhbXBsZS57b20iLCJzdWIi0

1JtYW1lsdG86bWlrZUBleGFtcGx1LmN

Response: Access Token

HTTP/1.1 200 OK

Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
"access_ token": "S1AV32hkKG",
"token type": "Bearer",
"expires in": 7776000

}

vbSIsIm5iZ2iI6MTQ50TE4AMzYWMSwWwiZXhwljoxNDk5
MTg3MjAxXLCIpYXQiOjEOOTkxODM2MD
EsImpO0aSI6ImlkMTIzNDU2IiwidHlIwIjoiaHROcCHM
6Ly91eGFtcGx1LmNvbS9yZWdpc3R1lc
iJ9.SAXPMaJK_le_WZidTQASjiEZ4UoI7—
P2SbmnHKr6LvP8Z2JZ2X6J1npK xClJswAnilT
plUnHJs1lc08JrexctaeEIBrgqwHG18iBcWKjhHK2Tv

5m4nbTsS1i1IMFQOIMUTRFg3 LQiHQV2
M8Hf1v9g9YaQgxDa4MKOasDUtE zYMHz8kKDb-3jj-
Vh4mvVDeM4 FPiffd2C5ck]jkrZBNOKO
01Xktm7xTgX6£fk56KTrejeAd4x6D 1ygJcGEjZCvoK
nki7J1-6MfwUKb9ZoZOLiwHf51LXPuy
_QrOyMOpONWKJj 9K4M] 7I4GPGvzyVapazUgjcOazyY
rlu p9tnS1E781dDLuw

Non-Base64 encoded example of the request
parameter object

"alg": "RS256",
"kid": "12345",
"typ n . n JWT L

"iss": "s6BhdRkgt3",

"sub": "s6BhdRkqgt3",

"exp": 1499187201,

"iat": 1499183601,

"Jjti": "idl123456",

"aud": "https://
resourcema.coventrybuildingsociety.co.uk
/as/token.ocauth2"

}

Step 4 — Confirm Funds

1. The CBPII can use the Access Token to create a Funds Confirmation Resource. The following examples are from the
Funds Confirmation API Specification

Where the initial Access Token expires, the CBPII will need to create a new request, CBS have not implemented Refresh
Tokens.

Example request against Funds Confirmations resource

Request: POST /Funds Confirmations API Response: POST / Funds Confirmations API

POST /funds-confirmations HTTP/1.1 HTTP/1.1 201 Created

client id:tppclientid Content-Type: application/Jjson
Content-Type: application/json x-fapi-interaction-id: hook5il3-ntIg-
Authorization: Bearer 4th3-rP41-3ro535touch3

ltlsatruthunlv3rs4lly
Accept: application/json; charset=utf-8

x-fapi-financial-id:
hing-5withh33dful
x—fapi-interaction-id: hook5il3-ntIg-
4th3-rP41-3ro535touch3
X-Client-Id:tppclientid

{

I4mth3R3-4p3r-411t-

"Data": {
"ConsentId":
"Reference":

"123456",
"PurchaseO1l",

"InstructedAmount": {

"Amount": "20.00",
"Currency": "GBP"

Step 5 — Get Funds Confirmation Consent Status

"FundsConfirmationId":
"ConsentId": "123456",
"CreationDateTime": "2017-05-

02T00:00:00+00:00",
"FundsAvailable": true,
"Reference": "PurchaseOl1l",
"InstructedAmount": {

"Amount": "20.00",
"GBP"

"789012",

"Currency":

}

s
"Links": {

"Self": "https://
resourcema.coventrybuildingsociety.co.
/open-banking/v2.0/funds-
confirmations/789012"

The CBPII can use the Access Token to retrieve Funds Confirmation Consent Resource. The following examples are

from the Funds Confirmation Consents API Specification

Where the initial Access Token expires, the CBPII will need to create a new request, CBS have not implemented Refresh

Tokens.

Example request against Confirm Funds Consent resource

Request: GET /Funds Confirmations API

GET /funds-confirmation-consents/123456
HTTP/1.1

Authorization: Bearer Jhingapulaav
x-fapi-financial-id: 0B/2017/001
x-fapi-interaction-id: 93bac548-d2de-
4546-b106-880a5018460d
X-Client-Id:tppclientid

Accept: application/json

Response: POST / Funds Confirmations API

HTTP/1.1 200 OK

x-fapi-interaction-id:
4546-b106-880a5018460d
Content-Type: application/json

93bacb548-d2de-

{
"Data": {
"ConsentId": "123456",
"CreationDateTime": "2017-05-

02T00:00:00+00:00",

"Status": "AwaitingAuthorisation",
"StatusUpdateDateTime": "2017-05-
02T00:00:00+00:00",
"ExpirationDateTime":
02T00:00:00+00:00",
"DebtorAccount": {
"SchemeName": "UK.OBIE.IBAN",
"Identification": "GB76LOYD30949301
273801",

"2017-05-

"SecondaryIdentification": "Roll
56988"
}
by
"Links": {
"Self": "https://

resourcema.coventrybuildingsociety.co.uk
/open-banking/v2.0/funds-confirmation-
consents/123456"

b
"Meta": {}

Edge Cases

This section provides further information on potential edge cases that may arise via the implementation of Accounts and

Payments API Specifications.

PSU Consent Authorization Interrupt with CBS

API Scenario Workflow Step Impact

Payments Due to an Step 3: Authorize Payment Status remains as The PISP may
interruption, the PSU Consent Pending or choose to
does not complete AcceptedTechnicalValidation implement a
the Authorization of separate follow up
the Payment with process which
CBS when redirected reminds the PSU to
by the PISP (after complete their
creating a Authorization
Paymentld) consent steps with

CBS.

Accounts Due to an Step 3: Authorize Account Status remains as The AISP may
interruption, the PSU Consent AwaitingAuthorisation choose to
does not complete implement a

the Authorization of
the Accounts request
with CBS when
redirected by the
AISP (after creating
an
AccountRequestld)

separate follow up
process which
reminds the PSU to
complete their
Authorization
consent steps with
CBS

	Coventry Building Society
	Security Profile v3.0
	Version control
	Release Note
	Overview
	Authentication
	Request Header
	Client Types
	Grant Types
	OIDC Hybrid Flow (response_type=code id_token)
	Client Credentials Grant Type using multiple scopes (scope=accounts payments)
	o Accounts:
	o Funds Confirmation:

	ID Token
	Access Tokens issued through Client Credentials Grant
	Access Tokens issued through Authorization Code Grant
	Authorization Codes
	Success Flows - Payment API Specification
	Payment Initiation with Client Credentials Grant Type and OIDC Hybrid Flow
	Client Credentials Grant Type (OAuth 2.0)
	Summary

	OIDC Hybrid Flow
	Summary

	Non-Normative HTTP Request and Response Examples
	Step 1 - Request Payment Initiation
	Step 2 - Setup Single Payment Initiation
	Step 3 - Authorize Consent

	Success Flows - Account API Specification
	Account and Transaction Information with Client Credentials Grant Type and OIDC Hybrid Flow
	Client Credentials Grant Type (OAuth 2.0)
	Summary

	OIDC Hybrid Flow
	Summary

	Non-Normative HTTP Request and Response Examples
	Step 1 - Request Account Information
	Step 2 - Setup Account Request
	Step 3 - Authorize Consent
	Step 4 - Request Account Data

	Success Flows – Funds Confirmation API Specification
	Funds Confirmation with Client Credentials Grant Type and OIDC Hybrid Flow
	Client Credentials Grant Type (OAuth 2.0)
	Summary

	OIDC Hybrid Flow
	Summary

	Non-Normative HTTP Request and Response Examples
	Step 1 - Request Funds Confirmation
	Step 2 - Setup Funds Confirmation Request
	Step 3 – Agree Funds Confirmation Consent
	Step 4 – Confirm Funds
	Step 5 – Get Funds Confirmation Consent Status

	Edge Cases
	PSU Consent Authorization Interrupt with CBS

